10th Maths 8.4
Chapter 8
Introduction to Trigonometry
NCERT Class 10th solution of Exercise 8.1
Exercise 8.4
Q1. Express the trigonometric ratios sinA,secAsinA,secA and tanAtanA in terms of cotAcotA.
Sol. :
sinA=1cosecA=1√cosec2A=1√1+cot2AsinA=1cosecA=1√cosec2A=1√1+cot2A
secA=1cosA=1sinAcosAsinA=cosecAcotAsecA=1cosA=1sinAcosAsinA=cosecAcotA
secA=√cosec2ACotA=√1+cot2AcotAsecA=√cosec2ACotA=√1+cot2AcotA
tanA=1cotAtanA=1cotA
Answer:
sinA=1√1+cot2AsinA=1√1+cot2A, secA=√1+cot2AcotAsecA=√1+cot2AcotA and tanA=1cotAtanA=1cotA
☝
Like, Share, and Subscribe.
Q2. Write all the other trigonometric ratios of ∠A∠A in terms of secAsecA.
Sol. :
Let △ABC△ABC is right-angled at ∠B∠B and secA=xsecA=x
secA=x=ACABsecA=x=ACAB
By Pythagoras theorem
BC2=AC2-AB2BC2=AC2−AB2
BC2=x2-1BC2=x2−1
BC=√x2-1BC=√x2−1
sinA=BCAC=√x2-1x=√sec2-1secAsinA=BCAC=√x2−1x=√sec2−1secA
cosA=ABAC=1x=1secAcosA=ABAC=1x=1secA
tanA=BCAB=√x2-11=√sec2A-1tanA=BCAB=√x2−11=√sec2A−1
cosecA=ACBC=x√x2-1=secA√secA-1cosecA=ACBC=x√x2−1=secA√secA−1
cotA=ABBC=1√x2-1=1√sec2A-1cotA=ABBC=1√x2−1=1√sec2A−1
Answer:
sinA=√sec2-1secAsinA=√sec2−1secA
cosA=1secAcosA=1secA
tanA=√sec2A-1tanA=√sec2A−1
cosecA=secA√secA-1cosecA=secA√secA−1
cotA=1√sec2A-1cotA=1√sec2A−1
Q3. Evaluate:
i) sin263∘+sin227∘cos217∘+cos273∘sin263∘+sin227∘cos217∘+cos273∘
Sol. :
=sin2(90∘-27∘)+sin227∘cos217∘+cos2(90∘-17∘)=sin2(90∘−27∘)+sin227∘cos217∘+cos2(90∘−17∘)
=cos227∘+sin227∘cos217∘+sin217∘
=11
=1
Answer:
=1
ii) sin25∘cos65∘+cos25∘sin65∘
Sol. :
=sin25∘cos(90∘-25∘)+cos25∘sin(90∘-25∘)
=sin25∘sin25∘+cos25∘cos25∘
=sin225∘+cos225∘
=1
Answer:
=1
Q4. Choose the correct option. Justify your choice:
i) 9sec2A-9tan2A=
A) 1 B) 9 C) 8 D) 0
Sol. :
=9sec2A-9tan2A
=9(sec2-tan2A)
=9×1
=9
Answer:
B) 9.
ii) (1+tanθ+secθ)(1+cotθ-cosecθ)=
A) 0 B) 1 C) 2 D) -1
Sol. :
=(1+tanθ+secθ)(1+cotθ-cosecθ)
=(1+sinθcosθ+1cosθ)×(1+cosθsinθ-1sinθ)
=cosθ+sinθ+1cosθ×sinθ+cosθ-1sinθ
=[(sinθ+cosθ)+1][(sinθ+cosθ)-1]sinθcosθ
=(sinθ+cosθ)2-12sinθcosθ
=sin2θ+cos2θ+2sinθcosθ-1sinθcosθ
=1+2sinθcosθ-1sinθcosθ
=2sinθcosθsinθcosθ
=2
Answer:
D) 2.
iii) (secA+tanA)(1-sinA)=
A) secA B) sin A C) cosecA D) cosA
Sol. :
=(secA+tanA)(1-sinA)
=(1cosA+sinAcosA)(1-sinA)
=(1+sinA)(1-sinA)cosA
=1-sin2AcosA
=cos2cosA
=cosA
Answer:
D) cosA
iv) 1+tan2A1+cot2A=
A) sec2A B) -1 C) cot2A D) tan2A
Sol. :
=1+tan2A1+cot2A
=sec2Acosec2A
=1cos2A×sin2A1
=(sinAcosA)2
=tan2A
Answer:
D) tan2A.
Q5. Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
i) (cosecθ-cotθ)2=1-cosθ1+cosθ
Sol. :
LHS.
=(cosecθ-cotθ)2
=(1sinθ-cosθsinθ)2
=(1-cosθsinθ)2
=(1-cosθ)2sin2θ
=(1-cosθ)21-cos2θ
=(1-cosθ)2(1-cosθ)(1+cosθ)
=1-cosθ1+cosθ
=RHS.
LHS.=RHS.
Proved.
ii) cosA1+sinA+1+sinAcosA=2secA
Sol. :
=LHS.
=cosA1+sinA+1+sinAcosA
=cos2A+(1+sinA)2cosA(1+sinA)
=cos2A+1+sin2A+2sinAcosA(1+sinA)
=sin2A+cos2A+1+2sinAcosA(1+sinA)
=1+1+2sinAcosA(1+sinA)
=2+2sinAcosA(1+sinA)
=2(1+sinA)cosA(1+sinA)
=2cosA
=2secA
=RHS.
LHS.=RHS.
Proved.
iii) tanθ1-cotθ+cotθ1-tanθ=1+secθcosecθ
[Hint: Write the expression in terms of sinθ and cosθ]
Sol. :
=LHS.
=tanθ1-cotθ+cotθ1-tanθ
=sinθcosθ1-cosθsinθ+cosθsinθ1-sinθcosθ
=sin2θcosθ(sinθ-cosθ)+cos2θsinθ(cosθ-sinθ)
=sin3θ-cos3θsinθcosθ(sinθ-cosθ)
=1+sinθcosθsinθcosθ
=1sinθcosθ+1
=cosecθsecθ
=1+secθcosecθ
=RHS
LHS.=RHS.
Proved.
iv) 1+secAsecA=sin2A1-cosA [Hint: Simplify LHS and RHS separately]
Sol. :
=LHS.
=1+secAsecA
=1+1cosA1cosA
=cosA+1cosA1cosA
=cosA+1cosA×cosA1
=cosA+11
=1+cosA1×1-cosA1-cosA
=1-cos2A1-cosA
=sin2A1-cosA
=RHS
LHS.=RHS.
Proved.
v) cosA-sinA+1cosA+sinA-1=cosecA+cotA, using the identity cosec2A=1+cotA
Sol. :
=LHS.
=cosA-sinA+1cosA+sinA-1
=cotA-1+cosecAcotA+1-cosecA
=(cotA-cosecA)-1cotA-cosecA+1
=[(cotA+cosecA)-1](cotA-cosecA)[cotA-cosecA+1](cotA-cosecA)
=(cot2A-cosec2A)-(cotA-cosecA)(cotA-cosecA+1)(cotA-cosecA)
=-1-cotA+cosecA(cotA-cosecA+1)(cotA-cosecA)
=cotA-cosecA+1(cotA-cosecA+1)(cosecA-cotA)
=1cosecA-cotA
=cosec2A-cot2AcosecA-cotA
=(cosecA-cotA)(cosecA+cotA)cosecA-cotA
=cosecA+cotA
=RHS.
LHS.=RHS.
Proved.
vi) √1+sinA1-sinA=secA+tanA
Sol. :
=LHS.
=√1+sinA1-sinA
=√1+sinA1-sinA×√1+sinA1+sinA
=√(1+sinA)21-sin2A
=√(1+sinA)2cos2A
=1+sinAcosA
=1cosA+sinAcosA
=secA+tanA
=RHS.
LHS.=RHS.
Proved.
vii) sinθ-2sin3θ2cos3θ-cosθ=tanθ
Sol. :
=LHS.
=sinθ-2sin3θ2cos3θ-cosθ
=sinθ(1-2sin2θ)cosθ(2cos2θ-1)
=sinθ(1-2sin2θ)cosθ[2(1-sin2θ)-1]
=sinθ(1-2sin2θ)cosθ(1-2sin2θ)
=sinθcosθ
=tanθ
=LHS.
RHS.=LHS.
Proved.
viii) (sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A
Sol. :
=LHS.
=(sinA+cosecA)2+(cosA+secA)2
=sin2A+2sinAcosecA+cosec2A+cos2A+2cosAsecA+sec2A
=sin2A+cos2A+2sinA×1sinA+cosec2A+sec2A+2cosA×1cosA
=1+2+cosec2A+sec2A+2
=1+2+2+(1+cot2A)+(1+tan2A)
=1+2+2+1+1+cot2A+tan2A
=7+tan2A+cot2A
=RHS.
LHS.=RHS.
ix) (cosecA-sinA)(secA-cosA)=1tanA+cotA
[Hint: Simplify LHS and RHS separately]
Sol. :
=LHS.
=(cosecA-sinA)(secA-cosA)
=(1sinA-sinA)(1cosA-cosA)
=(1-sin2AsinA)(1-cos2AcosA)
=cos2AsinAsin2AcosA
=sinAcosA
=RHS.
=1tanA+cotA
=1sinAcosA+cosAsinA
=1sin2A+cos2AcosAsinA
=11cosAsinA
=sinAcosA
RHS.=LHS.
Proved.
x) (1+tan2A1+cot2A)=(1-tanA1-cotA)2=tan2A
Sol. :
=(1+tan2A1+cot2A)
=sec2Acosec2A
=1cos2A×sin2A1
=sin2Acos2A
=tan2A
=(1-tanA1-cotA)2
=(1-sinAcosA1-cosAsinA)2
=[cosA-sinAcosAsinA-cosAsinA]2
=[-(sinA-cosA)cosAsinA-cosAsinA]2
=(-sinAcosA)2
=(-tanA)2
=tan2
LHS.=RHS.
Proved.
Comments