10th Maths 8.1

Chapter 8

Introduction to Trigonometry

Subscribe to Quiz10 for Important MCQs 

NCERT Class 10th solution of Exercise 8.2

NCERT Class 10th solution of Exercise 8.3

NCERT Class 10th solution of Exercise 8.4

Exercise 8.1

Q1. In `triangle ABC`, right-angled at `B`, `AB=24 cm, BC=7 cm`. Determine:
i) sin `A`, cos `A`
ii) sin `C`, cos `C`.
Sol. :
manysolution12.blogspot.com
In `triangle ABC`, `angle B = 90^circ`
By Pythagoras theorem
`AC^2 = AB^2 + BC^2`
`AC^2 = (24)^2+(7)^2`
`AC^2 = 576 + 49`
`AC^2 = 625`
`AC^2 = (25)^2`
`AC = 25 cm`
i) 
`sin A = (BC)/(AC) = 7/25`
`cos A = (AB)/(AC) = 24/25`
Answer:
`sin A = 7/25, cos = 24/25`
ii)
`sin C = (AC)/(AC) = 24/25`
`cos C = (BC)/(AC) = 7/25`
Answer:
`sin C = 24/25, cos C = 7/25`


Q2. In figure, find `tanP-cotR.`
manysolution12.blogspot.com
Sol. :
In `triangle PQR,`
By Pythagoras theorem
`QR^2 = PR^2 - PQ^2`
`QR^2 = (13)^2 - (12)^2`
`QR^2 = 169 - 144`
`QR^2 = 25`
`QR^2 = (5)^2`
`QR = 5 cm`
`= tan P - cot R`
`= (QR)/(PQ) - (QR)/(PQ)`
`= 5/12 - 5/12`
`= 0`
Answer:
`tan P - cot R = 0.`  
Q3. If `sin A=3/4,` calculate `cos A` and `tan A.`
Sol. :
manysolution12.blogspot.com
Given:
`sin A = 3/4`
To Find:
`cos A, tan A`
Solve:
In `triangle ABC, angle B = 90^circ`
`sin A = 3/4 = (BC)/(AC)`
By Pythagoras theorem
`AB^2 = AC^2 - BC^2`
`AB^2 = (4)^2 - (3)^2`
`AB^2 = 16 - 9`
`AB^2 = 7`
`AB = sqrt7`
`cos A = (AB)/(AC) = (sqrt7)/4`
`tan A = (BC)/(AB) = 3/(sqrt7)`
Answer:
`cos A = (sqrt7)/4, tan A = 3/(sqrt7)`  
Q4. Given `15 cot A=8,` find `sin A` and `sec A`.
Sol. :
manysolution12.blogspot.com
Given:
`cot A = 8/15`
To find:
`sin A` and `sec A`.
Solve:
In `triangleABC`
`cot A = 8/15 = (AB)/(BC)`
By Pythagoras theorem
`AC^2 = AB^2 + BC^2`
`AC^2 = (8)^2 + (15)^2`
`AC^2 = 64 + 225`
`AC^2 = 289`
`AC^2 = (17)^2`
`AC = 17`
`sin A = (BC)/(AC) = (15)/(17)`
`sec A = (AC)/(AB) = (17)/8`
Answer:
`sin A = (15)/(17)` and `sec A = (17)/8`. 
Q5. Given `sec theta=13/12,` calculate all other trigonometric ratios.
Sol. :
manysolution12.blogspot.com
Given:
`sec theta = 13/12`
To Find:
All trigonometric ratios.
Solve:
In `triangle ABC`
`sec theta = 13/12 = (AC)/(BC)`
By Pythagoras theorem
`AB^2 = AC^2 - BC^2`
`AB^2 = (13)^2 - (12)^2`
`AB^2 = 169 -144`
`AB^2 = 25`
`AB^2 = (5)^2`
`AB = 5`
`sin theta = (AB)/(AC) = 5/12`
`cos theta = (BC)/(AC) = 12/13`
`tan theta = (AB)/(BC) = 5/12`
`cosec theta = (AC)/(AB) =13/5`
`cot theta = (BC)/(AB) = 12/5`
Answer:
`sin theta  = 5/12`
`cos theta  = 12/13`
`tan theta  = 5/12`
`cosec theta  =13/5`
`cot theta  = 12/5`
 Q6. If `angle A` and `angle B` are acute angles such that `cos A = cos B,` then show that 
`angle A=angle B.`
Sol. :
manysolution12.blogspot.com
Given:
`angle A ` and `angle B` are acute angles.
`cos A = cos B`
To Show:
`cos A = cos B`
Solve:
Let `triangle ABC`
`cos A = cos B`
`(AC)/(AB) = (BC)/(AB)`
`AC = BC`
`angle A = angle B` [Angle opposite to equal sides are equal.]
Proved.
Q7. If `cot theta=7/8,` evaluate: 
i) `((1+sin theta)(1-sin theta))/((1+cos theta)(1-cos theta))`
ii) `cot^2 theta`
Sol. :
i)
`= ((1 + sin theta)(1 - sin theta))/((1 + cos theta)(1 - cos theta))` [`(a+b)(a-b)=a^2-b^2`]
`= (1 - sin^2 theta)/(1 - cos^2 theta)`
`= (cos^2 theta)/(sin^2 theta)`
`= (cot theta)^2`
`= cot^2 theta`
`= (7/8)^2`
`=49/64`
Answer:
`=49/64`
ii)
`= cot^2 theta`
`= (cot theta)^2`
`= (7/8)^2`
`= 49/64`
Answer:
`= 49/64`
Q8. If `3cot A=4,` check whether `(1-tan^2 A)/(1+tan^2 A)=cos^2 A-sin^2 A` or not.
Sol. :
manysolution12.blogspot.com
Given:
`cot A = 4/3`
Solve:
Let `triangle ABC`
`cot A = 4/3 = (AB)/(BC)`
By Pythagoras theorem
`AC^2 = AB^2 + BC^2`
`AC^2 = (4)^2 + (3)^2`
`AC^2 = 16 + 9`
`AC^2 = 25`
`AC^2 = (5)^2`
`AC = 5`
To Prove:
`(1-tan^2 A)/(1+tan^2 A)=cos^2 A-sin^2 A` or not.
Proof:
`LHS.`
`= (1- (BC)/(AB))^2/(1+(BC)/(AB))^2`
`= (1-(3/4)^2)/(1+(3/4)^2)`
`= (1-9/16)/(1+9/16)`
`= (7/16)/(25/16)`
`= 7/25`
`RHS.`
`= cos^2A-sin^2A`
`= ((AB)/(AC))^2-((BC)/(AC))^2`
`= (4/5)^2-(3/5)^2`
`= 16/5-9/25`
`= (16-9)/25`
`= 7/25`
`LHS = RHS`
Proved.
Q9. In triangle `ABC,` right-angled at `B,` if `tan A=1/sqrt3,` find the value of
i) `sin A cos C + cos A sin C`
ii) `cos A cos C - sin A sin C`
Sol. :
manysolution12.blogspot.com
Given:
`tan A = 1/sqrt3`
Solve:
In `triangle ABC`
`tan A = 1/sqrt3 = (BC)/(AB)`
By Pythagoras theorem
`AC^2 = AB^2 + BC^2`
`AC^2 = (sqrt3)^2 + (1)^2`
`AC^2 = 3 + 1`
`AC^2 = 4`
`AC^2 = (2)^2`
`AC = 2`
i)
`= sin A cos C + cos A + sin C`
`= (BC)/(AC).(BC)/(AC) + (AB)/(AC).(AB)/(AC)`
`= ((BC)/(AC))^2 + ((AB)/(AC))^2`
`= (1/2)^2 + (sqrt3/2)^2`
`= 1/4 + 3/4`
`= 4/4 = 1`
Answer:
 The value is `1`.
ii)
`= cos A cos C - sin A sin C`
`= (AB)/(AC).(BC)/(AC) - (BC)/(AC).(AB)/(AC)`
`= (AB.BC)/(AC)^2 - (AB.BC)/(AC)^2`
`= (sqrt3.1)/(2)^2 - (sqrt3.1)/(2)^2`
`= (sqrt3)/4 - (sqrt3)/4`
`= 0`
Answer:
The value is `0`.
Q10. In `triangle PQR,` right-angled at `Q, PR+QR=25 cm` and `PQ=5 cm.` Determine the values of `sin P, cos P` and `tan P.`
Sol. :
manysolution12.blogspot.com
Given:
`triangle PQR,` `angle Q = 90^circ, `
`PR + QR = 25 cm,`___________(1) 
`PQ = 5 cm`.
To find:
`sin P, cos P,` and `tan P`.
Solve:
In `triangle PQR`
By Pythagoras theorem
`(PQ)^2 = (PR)^2 - (QR)^2`
`(5)^2 = (PR + QR)(PR - QR)`
`25 = 25(PR  - QR)`
`25/25 = PR - QR`
`PR - QR = 1`____________(2)
From equation (1) `+` (2)
`PR + QR + PR - QR = 25 + 1`
`PR + PR = 26`
`2PR = 26`
`PR = 26/2`
`PR = 13`
Put in equation (1)
`13 + QR = 25`
`QR = 25 - 13`
`QR = 12`
`sin P = (QR)/(PR) = 12/13`
`cos P = (PQ)/(PR) = 5/13`
`tan P = (QR)/(QP) = 12/5`
Answer:
`sin P = 12/13, cos P = 5/13, tan P = 12/5`.
Q11. State whether the following are true or false, Justify your answer:
i) The value of `tan A` is always less than `1.`
ii) `sec A=12/5` for some value of angle `A.`
iii) `cos A` is the abbreviation used for the cosecant of angle `A.`
vi) `cot A` is the product of `cot` and `A.`
v) `sin theta=4/3` for some angle `theta.`
Answer:
i) false,    ii) true    iii) false    iv) false    v) false.

Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result