10th Maths 8.1
Chapter 8
Introduction to Trigonometry
Subscribe to Quiz10 for Important MCQs
NCERT Class 10th solution of Exercise 8.2
NCERT Class 10th solution of Exercise 8.3
NCERT Class 10th solution of Exercise 8.4
Exercise 8.1
Q1. In △ABC, right-angled at B, AB=24cm,BC=7cm. Determine:
i) sin A, cos A
ii) sin C, cos C.
Sol. :
By Pythagoras theorem
AC2=AB2+BC2
AC2=(24)2+(7)2
AC2=576+49
AC2=625
AC2=(25)2
AC=25cm
i)
sinA=BCAC=725
cosA=ABAC=2425
Answer:
sinA=725,cos=2425
ii)
sinC=ACAC=2425
cosC=BCAC=725
Answer:
sinC=2425,cosC=725
Q2. In figure, find tanP-cotR.
In △PQR,
By Pythagoras theorem
QR2=PR2-PQ2
QR2=(13)2-(12)2
QR2=169-144
QR2=25
QR2=(5)2
QR=5cm
=tanP-cotR
=QRPQ-QRPQ
=512-512
=0
Answer:
tanP-cotR=0.
Q3. If sinA=34, calculate cosA and tanA.
Sol. :
sinA=34
To Find:
cosA,tanA
Solve:
In △ABC,∠B=90∘
sinA=34=BCAC
By Pythagoras theorem
AB2=AC2-BC2
AB2=(4)2-(3)2
AB2=16-9
AB2=7
AB=√7
cosA=ABAC=√74
tanA=BCAB=3√7
Answer:
cosA=√74,tanA=3√7
Q4. Given 15cotA=8, find sinA and secA.
Sol. :
cotA=815
To find:
sinA and secA.
Solve:
In △ABC
cotA=815=ABBC
By Pythagoras theorem
AC2=AB2+BC2
AC2=(8)2+(15)2
AC2=64+225
AC2=289
AC2=(17)2
AC=17
sinA=BCAC=1517
secA=ACAB=178
Answer:
sinA=1517 and secA=178.
Q5. Given secθ=1312, calculate all other trigonometric ratios.
Sol. :
secθ=1312
To Find:
All trigonometric ratios.
Solve:
In △ABC
secθ=1312=ACBC
By Pythagoras theorem
AB2=AC2-BC2
AB2=(13)2-(12)2
AB2=169-144
AB2=25
AB2=(5)2
AB=5
sinθ=ABAC=512
cosθ=BCAC=1213
tanθ=ABBC=512
cosecθ=ACAB=135
cotθ=BCAB=125
Answer:
sinθ =512
cosθ =1213
tanθ =512
cosecθ =135
cotθ =125
Q6. If ∠A and ∠B are acute angles such that cosA=cosB, then show that
∠A=∠B.
Sol. :
∠A and ∠B are acute angles.
cosA=cosB
To Show:
cosA=cosB
Solve:
Let △ABC
cosA=cosB
ACAB=BCAB
AC=BC
∠A=∠B [Angle opposite to equal sides are equal.]
Proved.
Q7. If cotθ=78, evaluate:
i) (1+sinθ)(1-sinθ)(1+cosθ)(1-cosθ)
ii) cot2θ
Sol. :
i)
=(1+sinθ)(1-sinθ)(1+cosθ)(1-cosθ) [(a+b)(a-b)=a2-b2]
=1-sin2θ1-cos2θ
=cos2θsin2θ
=(cotθ)2
=cot2θ
=(78)2
=4964
Answer:
=4964
ii)
=cot2θ
=(cotθ)2
=(78)2
=4964
Answer:
=4964
Q8. If 3cotA=4, check whether 1-tan2A1+tan2A=cos2A-sin2A or not.
Sol. :
cotA=43
Solve:
Let △ABC
cotA=43=ABBC
By Pythagoras theorem
AC2=AB2+BC2
AC2=(4)2+(3)2
AC2=16+9
AC2=25
AC2=(5)2
AC=5
To Prove:
1-tan2A1+tan2A=cos2A-sin2A or not.
Proof:
LHS.
=(1-BCAB)2(1+BCAB)2
=1-(34)21+(34)2
=1-9161+916
=7162516
=725
RHS.
=cos2A-sin2A
=(ABAC)2-(BCAC)2
=(45)2-(35)2
=165-925
=16-925
=725
LHS=RHS
Proved.
Q9. In triangle ABC, right-angled at B, if tanA=1√3, find the value of
i) sinAcosC+cosAsinC
ii) cosAcosC-sinAsinC
Sol. :
tanA=1√3
Solve:
In △ABC
tanA=1√3=BCAB
By Pythagoras theorem
AC2=AB2+BC2
AC2=(√3)2+(1)2
AC2=3+1
AC2=4
AC2=(2)2
AC=2
i)
=sinAcosC+cosA+sinC
=BCAC.BCAC+ABAC.ABAC
=(BCAC)2+(ABAC)2
=(12)2+(√32)2
=14+34
=44=1
Answer:
The value is 1.
ii)
=cosAcosC-sinAsinC
=ABAC.BCAC-BCAC.ABAC
=AB.BC(AC)2-AB.BC(AC)2
=√3.1(2)2-√3.1(2)2
=√34-√34
=0
Answer:
The value is 0.
Q10. In △PQR, right-angled at Q,PR+QR=25cm and PQ=5cm. Determine the values of sinP,cosP and tanP.
Sol. :
△PQR, ∠Q=90∘,
PR+QR=25cm,___________(1)
PQ=5cm.
To find:
sinP,cosP, and tanP.
Solve:
In △PQR
By Pythagoras theorem
(PQ)2=(PR)2-(QR)2
(5)2=(PR+QR)(PR-QR)
25=25(PR -QR)
2525=PR-QR
PR-QR=1____________(2)
From equation (1) + (2)
PR+QR+PR-QR=25+1
PR+PR=26
2PR=26
PR=262
PR=13
Put in equation (1)
13+QR=25
QR=25-13
QR=12
sinP=QRPR=1213
cosP=PQPR=513
tanP=QRQP=125
Answer:
sinP=1213,cosP=513,tanP=125.
Q11. State whether the following are true or false, Justify your answer:
i) The value of tanA is always less than 1.
ii) secA=125 for some value of angle A.
iii) cosA is the abbreviation used for the cosecant of angle A.
vi) cotA is the product of cot and A.
v) sinθ=43 for some angle θ.
Answer:
i) false, ii) true iii) false iv) false v) false.
Comments