10th Maths 8.3
Chapter 8
Introduction to Trigonometry
NCERT Class 10th solution of Exercise 8.1
NCERT Class 10th solution of Exercise 8.4
Exercise 8.3
Q1. Evaluate:
i) sin18∘cos72∘sin18∘cos72∘
Sol. :
=sin18∘cos72∘=sin18∘cos72∘
=sin18∘cos(90∘-18∘)=sin18∘cos(90∘−18∘)
=sin18∘sin18∘=sin18∘sin18∘
=1=1
Answer:
=1=1.
ii) tan26∘cot64∘tan26∘cot64∘
Sol. :
=tan26∘cot64∘=tan26∘cot64∘
=tan26∘cot(90∘-26∘)=tan26∘cot(90∘−26∘)
=tan26∘tan26∘=tan26∘tan26∘
=1=1
Answer:
=1=1
iii) cos48∘-sin42∘cos48∘−sin42∘
Sol. :
=cos48∘-sin42∘=cos48∘−sin42∘
=cos(90∘-42∘)-sin42∘=cos(90∘−42∘)−sin42∘
=sin42∘-sin42∘=sin42∘−sin42∘
=0=0
Answer:
=0=0
iv) cosec31∘-sec59∘cosec31∘−sec59∘
Sol. :
=cosec31∘-sec59∘=cosec31∘−sec59∘
=cosec(90∘-59∘)-sec59∘=cosec(90∘−59∘)−sec59∘
=sec59∘-sec59∘=sec59∘−sec59∘
=0=0
Answer:
=0=0
☝
Like, Share, and Subscribe
Q2. Show that:
i) tan48∘tan23∘tan42∘tan67∘=1tan48∘tan23∘tan42∘tan67∘=1
Sol. :
L.H.S.L.H.S.
=tan48∘tan23∘tan67∘=tan48∘tan23∘tan67∘
=tan(90∘-42∘)tan23∘tan42∘tan(90∘-23∘)=tan(90∘−42∘)tan23∘tan42∘tan(90∘−23∘)
=cot42∘ tan23∘tan42∘cot23∘=cot42∘ tan23∘tan42∘cot23∘
=(cos42∘sin42∘)×(sin23∘cos23∘)×(cos23∘sin23∘)=(cos42∘sin42∘)×(sin23∘cos23∘)×(cos23∘sin23∘)
=1=1
=R.H.S.=R.H.S.
L.H.S.=R.H.S.L.H.S.=R.H.S.
Proved.
ii) cos38∘cos52∘-sin38∘sin52∘=0cos38∘cos52∘−sin38∘sin52∘=0
Sol. :
L.H.S.L.H.S.
=cos38∘cos52∘-sin38∘sin52∘=cos38∘cos52∘−sin38∘sin52∘
=cos38∘cos(90∘-38∘)=cos38∘cos(90∘−38∘)-sin38∘sin(90∘-38∘)−sin38∘sin(90∘−38∘)
=sin38∘cos38∘-sin38∘cos38∘=sin38∘cos38∘−sin38∘cos38∘
=0=0
Answer:
=0=0
Q3. If tan2A=cot(A-18∘),tan2A=cot(A−18∘), where 2A is an acute, angle find the value of A.
Sol. :
tan2A=cot(A-18∘)
cot(90∘-2A)=cot(A-18∘)
90∘-2A=A-18∘
90∘+18∘=A+2A
108∘=3A
A=108∘3
A=36∘
Answer:
A=36∘.
Q4. If tanA=cotB, prove that A+B=90∘.
Sol. :
tanA=cotB
tanA=tan(90∘-B)
A=90∘-B
A+B=90∘
Proved.
Q5. If sec4A=cosec(A-20∘), where 4A is an acute angle, find the value of A.
Sol. :
sec4A=cosec(A-20∘)
cosec(90∘-4A)=cosec(A-20∘)
90∘-4A=A-20∘
4A+A=90∘+20∘
5A=110∘
A=110∘5
A=22∘
Answer:
A=22∘
Q6. If A,B and C are interior angles of a triangle ABC, then show that
sin(A+B2)=cosA2
Sol. :
Sum of interior angles of triangles ABC
A+B+C=180∘
B+C=180∘-A
Divide by 2 both sides
B+C2=180∘-A2
B+C2=(90∘-A2)
L.H.S.
=sin(B+C2)
=sin(90∘-A2)
=cosA2
=R.H.S.
L.H.S.=R.H.S.
Proved.
Q7. Express sin67∘+cos75∘ in terms of trigonometric ratios of angles between 0∘ and 45∘.
Sol. :
=sin67∘+cos75∘
=sin(90∘-23∘)+cos(90∘-15∘)
=cos23∘+sin15∘
Answer:
=cos23∘+sin15∘.
Comments