Division on Numbers

Division on Number

Maths Short Trick of Number System                                            

Maths Short Trick of Multiplication

Maths Short Trick of Square and Square-root

Maths Short Trick of Percentage

Maths Short Trick of H.C.F. and L.C.M. of Numbers

Maths Short Trick of Ratio and Proportion

Maths Short Trick of Partnership

Maths Short Trick of Work and Time

Maths Short Trick of Problems of Ages

Maths Short Trick of Simple Interest

Maths Short Trick of Compound Interest

Maths Short Trick of Profit and Loss

Division Algorithm:

                                              
By Euclid's Division Algorithm  a=bq+r
where 
a=Dividend                                                        b=Divisor                                                          q=quotient                                                        r=remainder
b is not equal to zero 
                                     &  0<r<b
In general, we have :                                                         
Dividend = (Divisor X Quotient )   +Remainder .                                                          

Example: -

                                                                          
1) Suppose we divide 123 by 16. Then we  have
                  16) 123 ( 7
                        -112
                        -------
                            11
     
Dividend = 123
Divisor    =  16
Quotient =   7
Remainder  = 11
Clearly,         123  = 16 X 7  +11
2) On dividing 16890 by a certain number, the quotient is 123 and the remainder is 39. Find the divisor.
Sol.         Divisor = (Dividend - Remainder)
                                ---------------------------------------
                                            Quotient
                                                                                                                                                                                       
                              =  16890 - 39
                                 -----------------
                                         123                                                                  =      137
 3)Find the number nearest to 5028, which is exactly divisible by 64.                                       Sol.         64)  5028 (78
                      - 448
                     -----------
                          548
                       -  512
                     -----------
                             36
                   Remainder   36,  which is greater than half of the divisor.                                        Therefore    
Required number = 5028+(64 -36)                                                        = 5056 .                       
4)  Find the number which is nearest to 6444  and exactly divisible by 42.
Sol.     42 ) 6444   ( 153
                 - 42                                                                             ------------
                   224
                 - 210
                 -----------
                     144
                   - 126
                 ----------
                       18  
                                                                        Remainder    18,   which is less than half of the divisor.                                                    Therefore
Required number  = ( 6444 - 18 )
                                  =    6426
5) What least number must be added to 5204 to  get a number exactly divisible by 180 ?
Sol.           180)5204  ( 28
                        -360
                        --------
                         1604
                       - 1440   
                        ---------
                            164
Remainder 164 , which is nearest to divisor.

Therefore
Required number =  (180 - 164 )
                               =      16 
6)what least number must be subtracted from 6500 to get a number exactly divisible by 135 ?
Sol.           135 )6500 (48
                        - 540
                         -------
                          1100
                        - 1080
                          -------
                              20
Remainder is 20
Therefore the number to be subtracted is 20.




Tests of Divisibility  

                                               

1)  Divisibility by 2:-

                                       If unit digit of given number is any one of 0,2,4,6 & 8.

Example -

 84954 is divisible by 2 ,while  54321 is not.

2)  Divisibility by 3 :-

                                     If the sum of digits of given number is  divisible by 3.

Example:- 

592482 is divisible by 3, sum of its digits 5+9+2+4+8+2 =30  which is divisible by 3.

3)Divisibility by 4 :-

                                     A number is divisible by 4, if the number formed by the last two digit is divisible by 4.

Example :-

892648 is divisible by 4, since the number formed by the last two digits is 48, which is divisible by 4.

4)Divisibility by 5 :-

                                    A number is divisible by 5, if its unit's digit is either 0 or 5 . 

Example :-  

20820 and 50345 are divisible by 5 , while 30934 and 40946 are not.

5) Divisibility by 6 :- 

                                    A number is divisible by
6 , if it is divisible by both 2 and 3 .

Example :-  

The number 35256 is divisible by 2 . Sum of its digits = ( 3+5+2+5+6 )  = 21 , which is divisible by 3 . thus , 35256  is divisible by 2 as well as 3 .Hence , 35256 is divisible by 6 .

6) Divisibility by 8 :-

                                      A number is divisible by 8, if the number formed by the last three digits of the given number is divisible by 8 .

Example :- 

953360 is divisible by 8, since the number formed by last three digits is 360, which is divisible by 8 .
While , 529418 is not divisible by 8 , since the number formed by last three digits is 418 , which  is not divisible by 8.

7) Divisibility by 9 :-

                                      A number is divisible by 9 , if the sum of its digits is divisible by 9.

Example :-

                     60732 is divisible by 9, since sum of digits = ( 6+0+7+3+2 ) = 18 , which is divisible by 9.
But , 68956 is not divisible by 9 , since sum of digits = ( 6+8+9+5+6 ) = 34 ,  which is not divisible by 9 .

8) Divisibility by 10 :-

                                        A number is divisible by 10 , if it ends with 0 .

Example :-

                    96410 , 10480 are divisible by 10, while 96375 is not .

9) Divisibility by 11 :-

                                        A number is divisible by 11 ,  if the difference of the sum of its digits at odd places and the sum of its digits at even places , is either 0 or a number divisible by 11.

Example :-    

                     The number 4832718 is divisible by 11 , since  : ( sum of digits at odd places ) -   ( sum of digits at even places )  =  ( 8+7+3+4 ) - ( 1+2+8 ) = 11, which is divisible by 11

10) Divisibility by 12 :-

                                        A  number is divisible by 12 , if it is divisible by both 4 and 3 .

Example :-

                    Consider the number 34632 .
(a) The number formed by last  two digits is 32 , which is  divisible by 4.
(b) Sum of digits = ( 3+4+6+3+2 ) =18 which is divisible by 3 .            
(c) Thus, 34632 is divisible by 4 as well as 3. Hence , 34632 is divisible by 12 .

11) Divisibility by 14 :- 

                                        A number is divisible by 14 , if it is divisible by 2 as well as 7.

Example :-  

42 ,56

12) Divisibility by 15 :-

                                         A number is divisible by 15 , if  it is divisible by both 3 and 5.
Example :- 
                      30 ,45 ,120

13) Divisibility by 16 :- 

                                         A number is divisible by 16, if the number formed by the last 4 digits is divisible by 16.

Example :- 

                    7957536 is divisible by 16 , since the number formed by the last four digits is 7536 , which is divisible by 16 .

14) Divisibility by 24 :- 

A given number is divisible by both 3 and 8.

15)  Divisibility by 40 :- 

A given number is divisible by 40, if it is divisible by both 5 and 8.

16) Divisibility by 80 :-

                                        A given number is divisible by 80 ,if it is divisible by both 5 and 16 .

Note :-

 If a number is divisible  by p as well as q  , where p and q are co- primes ,then the given number is divisible by p and q .
If p and q are not co- primes  , then the number need not be divisible by p and q , even when it is divisible by both p and q .

Example :-

                    36 is divisible by both 4 and 6 , 
but it is not  divisible by ( 4×6  ) = 24, since  4 and 6 are not co- primes .

               -------- Exercise -----

 
1) Which of the following numbers is divisible by 3 ?
a)541326                             b)5967013
2)  Which of the following numbers is divisible by 4 ?
a)67920594                         b)618703572                                                                                          Answer     1) a     2)   b                                                                                                             


                                                                                

 


Comments

Very Helpfull ... Defined all the formulas in very easy way ... Appreciated...

Popular posts from this blog

10th Maths Chapter 1

MPBSE 10th & 12th Result

Indian State Capital Quiz