Number System

Number system :

A study about the characteristics of different numbers is called a number system. 
Different types of numbers 
    1) Natural Numbers 
    2) Whole Numbers 
    3) Integers
        (a) Positive Integers b) Negative Integers c) Non-Positive Integers d) Non Negative Integers )
    4) Rational Numbers 
    5) Irrational Numbers 
    6) Real Numbers 
    7) Imaginary Numbers 
    8) Even Numbers 
    9) Odd Numbers 
    10) Prime Numbers 
    11) Composite Numbers 
    12) Co - Prime  Number

(1) Natural Numbers :

    Counting numbers are called natural numbers. Set of Natural numbers denoted by N
Example 
    N=`{1,2,3,4,5,........ }`
    Note -
    Zero `(0)` is not a natural number

(2) Whole Numbers

    All counting numbers with zero (0) are called whole numbers, set of Whole numbers denoted by W
Example
    W=`{0,1,2,3,4.........}`                    
Note -
    Zero `(0)` is the whole number.

(3) Integers:

    All-natural numbers, `0` and negatives of counting numbers are called Integers. set of Integers is denoted by `I`.
Example
    `I`= `{ 0,1,2,3,4,5,6,....-1,-2,-3,-4,-5,....}`

(a)Positive Integers :     

     Set of all positive integers. 
Example 
     `I+` = `{1,2,3,4,5........}`
Note - 
    Positive integers and natural numbers are synonyms.        

(b)Negative Integers:

    Set of all negative integers 
Example
    `I-` = `{-1,-2,-3,-4,-5,..}`

(c) Non-positive Integers :

   set of all non-positive integers.
Example 
  `{0,-1,-2,-3,-4 .....}`

(d)Non negative Integers:

    set of all non negative integers.
Example  
    `{0,-1,-2,-3,-4,....}`
Note -
    Zero is neither positive nor negative integer.

(4) Rational numbers ;

     The numbers of the form `p/q` where `p` and `q` are integers and `q` are not equal to zero are known as rational numbers.
Example
     `3/4, 56/75, 0/23.`
                Terminating & Repeating Decimals:
    Every rational number has peculiar characteristics that it when expressed in decimal form is expressible either in terminating decimals or in repeating decimals.
Example:
                  `1/2 = 0.5`
                  `1/3 =0.333`..
                  `8/45 = 0.177`...

(5)Irrational Numbers:

   The numbers which of the not form `p/q` are known as irrational numbers.
        All numbers which when expressed in decimal form are in non - terminating and non - repeating form, are known as irrational numbers.
Example:
    `sqrt2, sqrt5, sqrt7`
Note -
     The exact value of π is not `22/7` as `22/7` is rational while π is irrational.  `22/7` is the approximate value of `π`. Similarly,  `3.14` is not an exact value of `pi`.
     Also `0.101001000100001`.... is a non -terminating and non-repeating decimal, so it is an example of an irrational number.

(6)Real Numbers :

      The group of all rational and irrational numbers is called real numbers.
     The set of  real  numbers is denoted by `R`
Note:- 
            a)      The sum or difference of rational and irrational numbers is irrational numbers. 
Example:-
                     `(2+sqrt3), (7-sqrt2), (2/3+sqrt3)` etc. are all irrational. 
           b)    The Product of a rational and an irrational number is irrational, e. g.
                     `3sqrt2, -3sqrt3` etc. are all irrational. 

(7) Imaginary  Numbers:

     Numbers that are not real numbers mean these numbers are in imagination,  known as  Imaginary         Numbers.  
Example:-
   `sqrt(-7), sqrt(-3)` 
Note:- 
            a) we cannot find the square root of negative numbers. 
            b) we can write Imaginary  Numbers 
as `( a + i b ), ( a - i b ).`

(8) Even Numbers :

     Integers divisible by `2` are known as even integers. 
Example:-
     `-4,-2,0,2,4`.... etc are even integers. 

 (9) Odd Numbers:-

     Integers not divisible by `2` are known as odd integers. 
Example:-
    `-5,-3,-1,1,3,5` .... etc are odd integers.

 (10)Prime  Numbers:-

   A number is greater than `1` and has exactly two factors, `1` and itself.
Example:- 
    a) `2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89 & 97.` 
    There are `25` prime numbers between  `1` to `100`.
    To test a number greater than `100,`  whether it is prime or not :
    let `x` be a given number and let `k` be an integer very near to `sqrtx` such that `kgtsqrtx` 
    If `x` is not divisible by any prime number less than `k`, then `x` is prime;  otherwise, it is not prime.
Example:-
     b) which of the following numbers are prime?
        1)`165`      2) `247`        3) `571`
Sol.
     1) The nearest value of `sqrt(165)` is `13`, i. e. `13`
     `gt,sqrt165`.  So, we test the divisibility of `165` by each of the prime numbers less than `13`.
     We find that `165` is divisible by `11`.
     So,`165` is not a prime number.
2) Clearly, `16gtsqrt247`.
     So, we divide `247` by each number less than `16` which are `2,3,5,7,9,11,13`.
     we find that `247` is divisible by `13`.
     Hence `247` is not a prime number. 
3)Clearly,  `24gtsqrt571`
     So, we divide `571` by each prime number less than `24` which are `2, 3,5,7,9,11,13,17,19,23.`
     We find that `571`  is not divisible by any of them.
     So, `571` is a prime number.

(11) Composite Numbers:-

    Numbers greater than `1` which are not prime, are known as composite numbers.
Example:-
    `4,6,8,9,10,12` etc. are all composite numbers.
Note:-
    1) `1` is neither prime nor composite.
    2) `2` is the only even number that is prime.
    3)There are `25` prime numbers between `1` and `100.`

(12) Co- Prime Numbers:-

    HCF  of two natural numbers is `1`, known as Co- prime numbers. 
Example:-
    `9` & `16` are Co- prime numbers.
                      
         

                     Exercise

1) If n is a natural number, then `sqrtn` is :
    a) Always a natural number
    b) Always a rational number
    c) Always an irrational number
    d) Sometimes a natural number and sometimes an irrational number
2) Which of the following is irrational.
    a) `sqrt(4/9)`    b) ` 4/5`    c) `sqrt7`    d) `sqrt81`
3) The number `0.318564318564318564`..... is:
    a) A natural number  b) An integer 
    c) A rational number  
    d) An irrational number
4) In between two fractions, there are:
    a) precisely two fractions
    b) even number of fractions 
    c) a finite number of fractions
    d) Infinitely many numbers of fractions
5) A prime number greater than `11` will never end with 
    a) `5`   b)  `7`    c)  `9`  d)  `1`
6)  The numbers `p`, `p+2`, `p+4` are all prime if `p` is  equal to :
    a) `3`   b)  `5`     c)  `29`  d)  `191`
7)   The product of two numbers is `-14/27.` If one of the numbers be `7/9,` then other number is :
      a) `-3/2`   b) `-2/3`   c)  `2/3`    d) `3/2`
8)  If `p` is a prime number and `p` divides `ab` (written as `p/(ab)` ), where a and b are integers,       then
      a) `p/a`  or  `p/b`   b) `p/a` & `p/b`  
      c) `p/(a+b)`            d) None
9)  which one of the following numbers can be represented as non - terminating, repeating decimals?
      a) `39/24`      b) `3/16`    c) `3/11`   d) `137/25`
10) Which of the following is a correct statement? 
     a) exact value of   `pi` is `3.14`
     b) exact value of   `pi` is `22/7`
     c) `pi` is irrational
     d) None of these.
Answer -  1) `d` 2) `c` 3) `c`  4) `d`   5)  `a`  6)  `a`  7) `b`
                 8) `a`  9) `c`  10) `c`


                        ------x------






 

Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result