Ratio and Proportion

I) Ratio :

The ratio of two quantities in the same units is the fraction that one quantity is of the other .

thus , the ratio a to b is the fraction a/b, written as a : b.

where  a = antecedent
              b = consequent
Example :
In  the ratio 2 : 3, represents   2/3  with antecedent = 2 , consequent = 3
                                                  
Rule :  
The value of a ratio remain unchanged , if each one of its terms is multiplied or divided by a same non-zero number .
1) If a > b, then a : b is called a ratio of greater inequality .
2) If a < b, then  a : b is called a ratio of less inequality.
3) If a > b  and same  positive number is added to each term of a : b , then the ratio is diminished .
4) If a < b and same positive number is added to each term of a : b , then the ratio is increased .
5) a2 : b2 is called duplicate ratio of a : b .
6) a: b3  is called triplet ratio of a : b .
7) a : √b is called sub - duplicate ratio of a : b
8) ∛a : ∛b is called sub - triplicate ratio of a : b .
9) If a : b and c : d are two ratios , then ac : bd is called the ratio compounded of the given ratio .

II Proportion :

The equality of two ratios is called proportion .
If a : b = c : d , we say that a, b, c, d are proportional and , we write, 
a : b : : c : d
where   a & d  = extremes term
               b & c = means terms
We always have :

Product of Means = Product of Extremes

1) Mean proportional between a and b is √ab 
2) If a : b : : c : d , we say that d is the fourth proportional to a, b, c.
3) If x is the third proportional to a , b  then a : b : : b : x.
4) If a/b = c/d then a+b/a-b = c+d/c-d   and
                                  a-b/a+b = c-d/c+d

III Variation :

Two types of variation
I) Direct 
In general word Directly Proportion mean the quantity x and y are increase or decrease simultaneously.
We say that x is directly proportional to y, If x = ky for some constant k and we write , 
x ∝ y
Example:
1) If the number of articles purchased increases, the total cost also increase.
2) More the money deposited in a bank, more is the interest earned.
II) Inverse
In general word Inversely Proportion mean the quantity x increase then y decrease or x decrease then y increase simultaneously.
Example :
1) As speed of a vehicle increase, the time taken to cover the same distance decreases.
2) For a given jobs, more the number of workers, less will be the time taken to complete the work.
Also , we say that x is inversely proportional to y , if 
x = k/y for some constant k and we write , 
∝ 1/y .

Example :

1) An electric pole, 14 metres high, casts a shadow of 10 metres. Find the height of a tree that casts a shadow of 15 metres under similar conditions.
Solution :
Let the height of the tree be x metres.

Height of object

14

  x

length of shadow

10

15

                       This is a case of direct proportion
                        14     =      x   
                        10            15
                        14×15 =    x   
                        10
                        14 ×   3 =    x
                          2
                         21      =    x
Thus , height of the tree is 21 metres .
2) If the weight of 12 sheets of thick paper is 40 grams, how many sheets of the same paper would weight 2500 grams.
Solution :
Let the number of sheets be x .

No. of  sheets

12

x

Weight

40

2500

                        This is a case of direct proportion.
                        12            x    
                        40            2500 
                         12 ×   2500   =    x
                             40 
                         x      =     750 
Thus, the required no. of sheets of paper = 750 .
3) A train is moving at a uniform speed of 75 km/h
i) How far will it travel in 20 minutes ?
ii) Find the time required to cover a distance travelled ( in km ) in 20 minutes be x and time take ( in minutes ) to cover 250 km be y.
Solution :
Let the distance travelled ( in km ) in 20 minutes be x and time take ( in minutes ) to cover 250 km be y.

 Distance ( in km )         

75 

 x

250 

 Time ( in minutes )

60

 20

 y

 This is a case of direct proportion.
i)    75     =      x  
       60           20  
      75 ×  20   =  x
          60
      x = 25
So, the train will cover a distance of 25 km in 20 minutes.
ii)    75         250 
        60               y
        y     =  250 × 60  
                         75
        y      =   200 minutes   or   3 hours 20 minutes.
Therefore, 3 hours 20 minutes will be required to cover a distance of 250 kms.
4) The scale of a map is given as 1 : 30000000. Two cities are 4 cm apart on map. Find the actual distance between them.
Solution:
Let the map distance be x cm and actual distance be y cm, then
                       1  30000000 = x : y
                              1            =    x   
                         3  × 107             y
Since x = 4  
So,                         1            =    4   
                         3  × 107             y            
y = 4× 3× 107 
y = 12× 107cm 
y = 1200 km
Thus, two cities which are 4 cm apart on the map, are actually 1200 km away from each other.
5) 6 pipes are required to fill a tank in 1 hour 20 minutes. How long will it take if any 5 pipes of the same type are used ?
Solution :
Let the desired time to fill the tank be x minutes.

Number of pipes

Time ( in minutes )

80 

x

This is a case of inverse proportion.
80 ×  6  = x × 5
80 ×  6  = x
    5
x = 96
Thus, time taken to fill the tank by 5 pipes is 96 minutes or 1 hour 36 minutes.
6) There are 100 students in a hostel. Food provision for them is for 20 days. How long will these provisions last, if 25 more students join the group ? 
Solution :
Let the provisions last for x days.

Number of student

100 

125 

Number of days

 20

 x

This is a case of inverse proportion.
So,
100 × 20 = 125 x
100 × 20 = x
     125
16  = x
Thus 16days provisions last if 25 more students join the group.


1) Divide Rs. 672 in the ratio 5 : 3 .
Sol. 
        Sum of the ratio terms = ( 5 + 3 )  = 8
                                       5 
First part = Rs 672 X ----  = Rs 420
                                       8
                                        
                                            3
Second part = Rs 672 X -----  =  Rs 252 
                                            8
  
2) A mixture contains alcohol and water in the ratio 4 : 3 . If 5 liters of water is added to the mixture , the ratio becomes 4 : 5 . Find the quantity of alcohol in the gives mixture .
Sol.
Let quantity of alcohol  4x litres
and quantity of water   3x  litres
Then
                    4x                    4
            ----------------    =    ------
                3x +  5                 5

                20x            =     4 ( 3x + 5 )
                20x            =     12x + 20
                20x-12x    =      20
                8x              =      20
                                                                                                                              20    
                  x              =     ------
                                           8
                  x              =     2.5
quantity of alcohol = ( 4 X 2.5 )
                                    =  10 litres .

Exercise :

1) If 0.75 : x : : 5 : 2 , then x is equal to :
a) 1.12    b) 1.20    c) 1.25    d) 1.30
2) If  x : y  = 5 : 2 , then ( 8x + 9y ) : ( 8x + 2y ) is :
a) 22 : 29    b) 26 : 61    c) 29 : 22    d) 61 : 26
3) Salaries of Ravi and Sumit are in the ratio 2 : 3 . If the salary of each is increased by Rs 4000 , the new ratio becomes  40 : 57 . What is Sumit's present salary ?
a) Rs. 17,000    b) Rs 20,000    c) Rs 25,000    d) None of these .
4) If 40% of a number is equal  to two - third of another number , what is the ratio of first number to the second number ?
a) 2: 5    b) 3: 7    c) 5 : 3    d) 7 : 3
5) If 10% of x = 20 % of , then x : y is equal to  
a) 1: 2    b) 2 : 1    c) 5 : 1    d) 10 : 1
 
Answer :
1) b    2) c    3) d    4) d    5) b
               
                 
                                       


 

Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result