H.C.F. & L.C.M. of Numbers

I.) Factors

When a divides b exactly , then we say that a is a factor of b and we write , a/b .
Example :
1) Prime factorisation of  22475 ?
Solution :
     5  |  22475
     5  |    4495
   29  |      899
   31  |        31
         |           1
Thus, prime factorisation of 
22475 = 5×5×29×31.

II.) Multiplies

When a divides b exactly , then we say that b is a ,multiple of a .

III.) H.C.F. (Highest Common Factor )

or

G.C.D. (Greatest Common Factor )

or 

G.C.M. (Greatest common Multiple )


The H.C.F. of two or more than two numbers is greatest number that divides each one of them exactly. This is also Known as greatest cimmon divisor (G.C.D. ) or greatest common measure (G.C.M.) .
To Find H.C.F. of Given Numbers :



1) H.C.F. By Factorisation :

Express each number as the product of primes . Now, take the product of least powers of common factors to get the H.C.F. .

Example :

a) Find the H.C.F. of 96 , 528 and 792 . 
Sol. 
96   = 2X2X2X2X2X3
528 = 2X2X2X2X3X11
792 = 2X2X2X3X3X11
H.C.F. = 2X2X2X3
           =  24

2) H.C.F. By Division :

Divide larger number by smaller one . Now , divide the divisor by the remainder . Repeat the process of the preceding divisor by the remainder last obtained , till the remainder 0 is obtained . The last divisor is the required H.C.F.

Example :

1) Find the H.C.F. of 370 and 592 .
Sol.
370 ) 592 ( 1
       -  370
----------------
          222 ) 370 ( 1
                  - 222
                ------------
                     148 ) 222 ( 1
                           -   148
                          ------------
                                  74 ) 148 ( 2
                                       -  148
                                      -----------
                                           000
H.C.F. of given numbers = 74
2) Find the H.C.F. of 312 , 351 and 650 .
Sol.
312 ) 351 ( 1
      -   312
     -----------
             39 ) 312 ( 8
                -    312
                -----------
                      000

39 ) 650 ( 16
     -  39
     --------
        260
     -  234 
       ------
          26 ) 39 ( 1
               -  26
                 ------
                   13 ) 39 ( 3
                        -  39
                        ---------
                            00
H.C.F. of given numbers = 13
                      777
3)  Reduce ---------- to lowest terms .
                     1147
Sol .
H.C.F. of 777 & 1147 is 37 
On dividing Nr & Dr of the given fraction by 37 , we get :
    777             21
= -------     =  --------
   1147            31


IV) L.C.M. ( Lowest common multiple )

The least number which is exactly divisible by each one of the given numbers , is  called their L.C.M.

V) L.C.M. By Fatorization :

Resolve each one of the given numbers into prime factors . Then , the product of hightest powers of all the factors , gives the 
L.C.M. 

Example :

1) Find the L.C.M. of 96 ,108 & 280.
Sol.
96    = 2X2X2X2X2X3
108  = 2X2X3X3X3
280  = 2X2X2X5X7
L.C.M.  = 2X2X2X2X2X3X3X3X5X7
             =  30240
2) Find the L.C.M. of 12 , 15 , 18 , 27.
Sol.
      2  |  12    -    15    -    18    -    27
 --------|---------------------------------------------
     3   |   6     -    15    -    9     -    27
---------|---------------------------------------------
     3   |   2    -      5     -    3     -      9
---------|---------------------------------------------
          |    2    -      5    -     1    -      3
so that 
L.C.M. = 2X 3X 3X 2X 5X 3
            =  540

VI) Two Important Rules :

1) Product of Two Numbers 
                  = ( Their H.C.F. ) X ( Their L.C.M. )
2) H.C.F. of given numbers always divides their L.C.M.

Example :

Find the L.C.M. of 852 and 1491 .
Sol. 
H.C.F. of 852 and 1491 = 213.
                    Product of Numbers  
L.C.M.   =  -------------------------------------
                             H.C.F.

                            852 X 1491
              =  ----------------------------
                                 213

            =                5964
  

VII)  H.C.F. & L.C.M. of fraction

1) H.C.F. of given fractions
                    H.C.F. of Numerators
    =        ------------------------------------------
                  L.C.M. of Denominators

2) L.C.M. of given fractions 
                    L.C.M. of Numerators
    =        -----------------------------------------
                    H.C.F. of Denominators

Example:

Find the H.C.F. and L.C.M. of 8/9 ,32/81 ,and 10/27
Sol. 
                 H.C.F. of 8, 32, 10               2 
H.C.F.  = -------------------------------   =   -----
                    L.C.M. of 9, 81, 27          81

                  L.C.M. of 8, 32, 10                160
L.C.M.  = -------------------------------  =  ------------
                   H.C.F of 9, 81, 27                    9

Exercise

1) The ratio of two numbers is  3 : 4 and their H.C.F. is 4 .Their L.C.M. is  :
a) 12    b) 16    c) 24    d) 48
2) Three numbers are in the ratio 1: 2 : 3 and their H.C.F. is 12 The numbers are:
a) 4, 8, 12    b) 5, 10 ,15   c) 10, 20, 30     
d) 12, 24, 36 
3) The H.C.F. of 1.75 , 5.6 and 7 is :
a) 0.07    b) 0.7    c) 3.5    d) 0.35
4) The G.C.M. of 3556 and 3444 is :
a) 25    b) 28    c) 3    d) 26
5) H.C.F. of 204 , 1190 and 1445 is :
a) 16    b) 17    c) 18    d) 17.5

Answer  1) d  2) d  3) d 4) b
               

                                     




Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result