9th Maths 2.5
NCERT Class 9th solution of Exercise 2.1
NCERT Class 9th solution of Exercise 2.2
NCERT Class 9th solution of Exercise 2.3
NCERT Class 9th solution of Exercise 2.4
NCERT Class 9th Maths Projects
Exercise 2.5
Q1. Use suitable identities to find the following products :
i) (x+4)(x+10) ii) (x+8)(x-10)
iii) (3x+4)(3x-5) iv) (y2+32)(y2-32)
v)(3-2x)(3+2x)
Sol. : i)
(x+a)(x+b)=x2+(a+b)x+ab [We use an identity]
(x+4)(x+10)=x2+(4+10)x+4×10
(x+4)(x+10)=x2+14x+40
Answer :
=x2+14x+40
ii)
(x+a)(x-b)=x2+(a-b)x-ab [We use an identity]
(x+8)(x-10)=x2+(8-10)x-8×10
(x+8)(x-10)=x2-2x-80
Answer :
=x2-2x-80
iii)
(x+a)(x-b)=x2+(a-b)x-ab [We use an identity]
(3x+4)(3x-5)=(3x)2+(4-5)3x-4×5
(3x+4)(3x-5)=9x2-3x-20
Answer :
=9x2-3x-20
iv)
(a+b)(a-b)=a2-b2 [We use an identity]
(y2+32)(y2-32)=(y2)2-(32)2
(y2+32)(y2-32)=y4-94
Answer :
=y4-94
v)
(a-b)(a+b)=a2-b2 [We use an identity]
(3-2x)(3+2x)=(3)2-(2x)2
(3-2x)(3+2x)=9-4x2
Answer :
=9-4x2
Q2.Evaluate the following products without multiplying directly :
i) 103×107 ii) 95×96 iii) 104×96
Sol. :
i)
(100+3)(100+7)
(x+a)(x+b)=x2+(a+b)x+ab [We use an identity]
Where x=100,a=3,andb=7
(100+3)(100+7)=1002+(3+7)100+3×7
(100+3)(100+7)=10000+1000+21
(100+3)(100+7)=11021
Answer :
=11021
ii)
(100-5)(100-4)
(x-a)(x-b)=x2-(a+b)x+ab [We use an identity]
Where x=100,a=3, and b=7
(100-5)(100-4)=1002-(5+4)100+5×4
(100-5)(100-4)=10000-900+20
(100-5)(100-4)=9120
Answer :
=9120
iii)
(100+4)(100-4)
(a+b)(a-b)=a2-b2
Where a=100,b=4
(100+4)(100-4)=(100)2-(4)2
(100+4)(100-4)=10000-16
(100+4)(100-4)=9984
Answer :
=9984
Q3. Factorise the following using appropriate identities :
i) 9x2+6xy+y2 ii) 4y2-4y+1 iii) x2-y2100
Sol. :
i)
9x2+6xy+y2
=(3x)2+2×3xy+(y)2
a2+2ab+b2=(a+b)2 [We use an identity]
Where a=3 and b=y
(3x)2+2×3xy+(y)2=(3x+y)2
Answer :
=(3x+y)2
ii)
4y2-4y+1
=(2y)2-2×2y×1+(1)2
a2-2ab+b2=(a-b)2 [We use an identity]
Where a=2y and b=1
(2y)2-2×2y×1+(1)2=(2y-1)2
Answer :
=(2y-1)2
iii)
(x)2-y2100
=(x)2-(y10)2
a2-b2=(a+b)(a-b)
Where a=x and b=y10
(x)2-(y10)2=(x-y10)(x+y10)
Answer :
=(x-y10)(x+y10)
Q4.Expand each of the following using suitable identity :
i) (x+2y+4z)2 ii) (2x-y+z)2
iii) (-2x+3y+2z)2 iv) (3a-7b-c)2
v) (-2x+5y-3z)2 vi) [14a-12b+1]
Sol. :
i)
(x+2x+4z)2
(p+q+r)2=p2+q2+r2+2(pq+qr+rp) [We use an identity]
Where p=x,q=2x and r=4z
(x+2x+4z)2=(x)2+(2x)2+(4x)2
+2(x×2x+2x×4z+4z×x)
(x+2x+4z)2=x2+4x2+16z2
+2(2x2+8xz+4zx)
(x+2x+4z)2=x2+4x2+16z2
+4x2+16xz+8zx
Answer :
=x2+4x2+16z2+2x2+16xz+8zx
ii)
(2x-y+z)2
(p+q+r)2=p2+q2+r2+2(pq+qr+rp) [We use an identity]
Where p=2x,q=-y and r=z
(2x-y+z)2=(2x)2+(-y)2+(z)2
+2[2x(-y)+(-y)z+z2x]
(2x-y+z)2=4x2+y2+z2
+2[-2xy-yz+2xz]
(2x-y+z)2=4x2+y2+z2
-4xy-2yz+4xz
Answer :
=4x2+y2+z2-4xy-2yz+4xz
iii)
(-2x+3y+2z)2
(p+q+r)2=p2+q2+r2+2(pq+qr+rp) [We use an identity]
Where p=(-2x),q=3y, and r=2z
(-2x+3y+2z)2=(-2x)2+(3y)2+(2z)2
+2[(-2x)(3y)+(3y)(2z)+(2z)(-2x)]
(-2x+3y+2z)z=4x2+9y2+4z2
+2[-6xy+6yz-4xz]
(-2x+3y+2z)2=4x2+9y2+4z2
-12xy+12yz-8xz
Answer :
=4x2+9y2+4z2-12xy+12yz-8xz
iv)
(3a-7b-c)2
(p+q+r)2=p2+q2+r2+2(pq+qr+rp) [We use an identity]
Where p=3a,q=-7b and r=-c
(3a-7b-c)2=(3a)2+(-7b)2+(-c)2
+2[(3a)(-7b)+(-7b)(-c)+(-c)(3a)]
(3a-7b-c)2=9a2+49b2-c2
+2[-21ab+7bc-3ac]
(3a-7b-c)2=9a2+49b2-c2-42ab+14bc-6ac
Answer :
=9a2+49b2-c2-42ab+14bc-6ac
v)
(-2x+5y-3z)2
(p+q+r)2=p2+q2+r2+2(pq+qr+rp) [We use an identity]
Where p=-2x,q=5y, and r=-3z
(-2x+5y-3z)2=(-2x)2+(5y)2+(-3z)2
+2[(-2x)(5y)+(5y)(-3z)+(-3z)(-2x)]
(-2x+5y-3z)2=4x2+25y2+9z2
+2[-10xy-15yz+6xz]
(-2x+5y-3z)2=4x2+25y2+9z2-20xy
-30yz+12xz
Answer :
=4x2+25y2+9z2-20xy-30yz+12xz
vi)
[14a-12b+1]2
(p+q+r)2=p2+q2+r2+2(pq+qr+rp) [We use an identity]
Where p=14,q=(-12) and r=1
[14a-12b+1]2=(a14)2+(-b122)+(1)2
+2[(a14)(-b12)+(-b12)(1)+(1)(a14)]
[14a-12b+1]2=a2116+b214+1
+2[-ab18-b12+a14]
[14a-12b+1]2=a2116+b214
+1+ab14-b+a14
Answer :
=a2116+b214+1+ab14-b+a14
Q5. Factorise :
i) 4x2+9y2+16z2+12xy-24yz-16xz
ii) 2x2+y2+8z2-2√2xy+4√2yz-8xz
Sol. :
i)
4x2+9y2+16z2+12xy-24yz-16xz
=(2x)2+(3y)2+(-4z)2+2(2x)(3y)
+2(3y)(-4z)+2(-4z)(2x)
[p2+q2+r2+2pq+2qr+2rp=(p+q+r)2] [We use an identity]
Where p=2x,q=3y and r=-4z
=(2x+3y-4z)2
Answer :
=(2x+3y-4z)2
ii)
2x2+y2+8z2-2√2xy+4√2yz-8xz
=(-√2x)2+(y)2+(2√2x)2+2(-√2x)(y)
+2(y)(2√2z)+2(2√2z)(-√2x)
[p2+q2+r2+2pq+2qr+2rp=(p+q+r)2] [We use an identity]
Where p=-√2x,q=y and r=2√2z
=(-√2x+y+2√2z)2
Answer :
=(-√2x+y+2√2z)2
Q6. Write the following cubes in expanded form :
i) (2x+1)3 ii) (2a-3b)3
iii) [32x+1]5 iv) [x-23y]3
Sol. :
i) (2x+1)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=2x, and q=1
=(2x)3+3(2x)2(1)+3(2x)(1)2+(1)3
=8x3+12x2+6x+1
Answer :
=8x3+12x2+6x+1
ii)(2a-3b)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=2a and q=-3b
=(2a)3+3(2a)2(-3b)+3(2a)(-3b)2
+(-3b)3
=8a3-36a2b+54ab2-27b3
Answer :
=8a3-36a2b+54ab2-27b3
iii)(32x+1)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=32x, and q=1
=(32x)3+3(32x)21+3(32x)(1)2
+(1)3
=278x3+394x2+332x+1
=278x3+274x2+92+1
Answer :
=278x3+274x2+92+1
iv) (x-23y)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=x and q=-23y
=(x)3+3(x)2(-23y)+3x(-23y)2
+(-23y)3
=x3-2x2y+43xy2-827y3
Answer :
=x3-2x2y+43xy2-827y3
Q7. Evaluate the following using suitable identities :
i) (99)3 ii) (102)3 iii) (998)3
Sol. :
i) (99)3
=(100-1)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=100, and q=-1
=(100)3+3(100)2(-1)+3(100)(-1)2+(1)3
=1000000-30000+300+1
=970299
Answer :
=970299
ii) (102)3
=(100+2)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=100 and q=2
=(100)3+3(100)2(2)+3(100)22+(2)3
=1000000+60000+1200+8
=1061208
Answer :
=1061208
iii) (998)3
=(1000-2)3
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
Where p=1000, and q=-2
=(1000)3+3(1000)2(-2)+3(1000)(-2)2+(-2)3
=1000000000-6000000+6000-8
=994011992
Answer :
=994011992
Q8. Factorise each of the following :
i) 8a3+b3+12a2b+6ab2
ii)8a3-b3-12a2b+6ab2
iii) 27-125a3-135a+225a2
iv) 64a3-27b3-144a2b+108ab2
Sol. :
i) 8a3+b3+12a2b+6ab2
=(2a)3+(b)3+3(2a)2(b)+3(2a)(b)2
p3+q3+3p2q+3pq2=(p+q)3 [We use an identity]
Where p=2a, and q=b
=(2a+b)3
Answer :
=(2a+b)3
ii) 8a3-b3-12a2b+6ab2
=(2a)3-(b)3-3(2a)2(b)+3(2a)(b)2
p3-q3-3p2q+3pq2=(p-q)3 [We use an identity]
Where p=2a, and q=-b
=(2a-b)3
Answer :
=(2a-b)3
iii) 27-125a3-135a+225a2
=(3)3-(5a)3-3(3)2(5a)+3(3)(5a)2
p3-q3-3p2q+3pq2=(p-q)3 [We use an identity]
Where p=3, and q=5a
=(3-5a)3
Answer :
=(3-5a)3
iv) 64a3-27b3-144a2b+108ab2
=(4a)3-(3b)3-3(4a)2(3b)+3(4a)(3b)2
p3-q3-3p2q+3pq2=(p-q)3 [We use an identity]
=(4a-3b)3
Answer :
=(4a-3b)3
Q9. Verify :
(i) x3+y3=(x+y)(x2-xy+y2)
ii) x3-y3=(x-y)(x2+xy+y2)
Sol. :
(i) x3+y3=(x+y)(x2-xy+y2)
(p+q)3=p3+3p2q+3pq2+q3 [We use an identity]
p3+q3=(p+q)3-3p2q-3pq2
p3+q3=(p+q)3-3pq(p+q)
p3+q3=(p+q)[(p+q)2-3pq]
p3+q3=(p+q)[(p2+q2+2pq-3pq]
p3+q3=(p+q)(p2-pq+q2)
Where p=x, and q=y
x3+y3=(x+y)(x2-xy+y2).
Proved
Alternate method
x3+y3=(x+y)(x2-xy+y2)
RHS
=(x+y)(x2-xy+y2)
=x(x2-xy+y2)+y(x2-xy+y2)
=x3-x2y+xy2+x2y-xy2+y3
=x3+y3
=LHS.
Proved.
ii) x3-y3=(x-y)(x2+xy+y2)
RHS
=(x-y)(x2+xy+y2)
=x(x2+xy+y2)-y(x2+xy+y2)
=x3+x2y+xy2-x2y-xy2-y3
=x3-y3
=LHS
proved.
Q10. Factorise each of the following :
i) 27y3+125z3 ii) 64m3-343n3
Sol. :
i)
27y3+125z3
=(3y)3+(5z)3
[p3+q3=(p+q)(p2-pq+q2] [We use an identity]
Where p=3y, and q=5z
=(3y+5z)3[(3y)2-(3y)(5z)+(5z)2]
=(3y+5z)3(9y2-15yz+25z2)
Answer :
=(3y+5z)(9y2-15yz+25z2)
ii)
64m3-343n3
=(4m)3-(7n)3
[p3-q3=(p-q)(p2+pq+q2] [We use an identity]
Where p=4m, and q=7n
=(4m-7n)[(4m)2+(4m)(7n)+(7n)2]
=(4m-7n)(16m2+28mn+49n2)
Answer :
=(4m-7n)(16m2+28mn+49n2)
Q11. Factorise 27x3+y3+z3-9xyz
Sol. :
27x3+y3+z3-9xyz
=(3x)3+(y)3+(z)3-3(3x)(y)(z)
p3+q3+r3-3pqr=(p+q+r)[p2+q2+r2-pq-qr-rp] [We use an identity]
Where p=3x,q=y, and r=z
=(3x+y+z)[(3x)2+(y)2+(z)2-3xy
`-yz-3xz]`
=(3x+y+z)[9x2+y2+z2-3xy
-yz-3xz]
Answer :
=(3x+y+z)[9x2+y2+z2-3xy
-yz-3xz]
Q12. Verify that x3+y3+z3-3xyz
=12(x+y+z)[(x-y)2+(y-z)2+(z-x)2]
Sol. :
RHS.
=12(x+y+z)[(x-y)2+(y-z)2+(z-x)2]
=12(x+y+z)[x2+y2-2xy+y2+z2-2yz
+z2+x2-2xz]
=12(x+y+z)[2x2+2y2+2z2-2xy
-2yz-2xz]
=12(x+y+z)2×[x2+y2+z2-xy-yz-xz]
=(x+y+z)[x2+y2+z2-xy-yz-xz]
(p+q+r)[p2+q2+r2-pq-qr-rp]
=p3+q3+r3-3pqr [We use an identity]
Where p=x,q=y, and r=z
=x3+y3+z3-3xyz
=LHS.
Proved.
Q13. If x+y+z=0, show that x3+y3+z3=3xyz.
Sol. :
We know that
p3+q3+r3-3pqr=(p+q+r)[p2+q2+r2-pq-qr-rp] [We use an identity]
Here x+y+z=0 [Given]
x3+y3+z3-3xyz=0×(x2+y2+z2-xy-yz-zx)
x3+y3+z3-3xyz=0
x3+y3+z3=3xyz
Proved
Q14.Without actually calculating the cubes, find the value of each of the following :
i) (-12)3+(7)3+(5)3
ii) (28)3+(-15)3+(-13)3
Sol. :
i) (-12)3+(7)3+(5)3
p3+q3+r3-3pqr=(p+q+r)[p2+q2+r2-pq-qr-rp] [We use an identity]
Where p=-12,q=7, and r=5
(-12)3+(7)3+(5)3-3(-12)(7)(5)=(-12+7+5)[(-12)2+(7)2+(5)2
-(-12)(7)-(7)(5)-(5)(-12)]
(-12)3+(7)3+(5)3-3(-12)(7)(5)=0
(-12)3+(7)3+(5)3=3(-12)(7)(5)
(-12)3+(7)3+(5)3=-1260
Answer :
=-1260
ii) (28)3+(-15)3+(-13)3
p3+q3+r3-3pqr=(p+q+r)[p2+q2+r2-pq-qr-rp] [We use an identity]
Where p=28,q=-15, and r=-13
(28)3+(-15)3+(-13)3-3(28)(-15)(-13)=(28-15-13)[(28)2+(-15)2
+(-13)2-(28)(-15)-(-15)(-13)-(-13)(28)]
(28)3+(-15)3+(-13)3-3(28)(-15)(-13)=0
(28)3+(-15)3+(-13)3=3(28)(-15)(-13)
(28)3+(-15)3+(-13)3=-16380
Answer :
=16380
Q15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given :
i) Area : 25a2-35a+12 ii) Area : 35y2+13y-12
Sol. :
i) Area=25a2-35a+12
Area=25a2-20a-15a+12
Area=5a(5a-4)-3(5a-4)
Area=(5a-4)(5a-3)
Area=L×B
Answer :
L=(5a-4), and B=(5a-3)
ii) Area=35y2+13y-12
Area=35y2+28y-15y-12
Area=7y(5y+4)-3(5y+4)
Area=(5y+4)(7y-3)
Area=L×B
Answer :
L=(5y+4), and B=(7y-3)
Q16. What are the possible expressions for the dimensions of the cuboids, whose volumes are given below?
i) Volume : 3x3-12x ii) Volume : 12ky2+8ky-20k
Sol. :
i) Volume=3x3-12x
Volume=3x(x2-4)
Volume=3x[(x)2-(2)2]
Volume=3x(x+2)(x-2)
Volume=L×B×H
Answer :
L=3x,B=(x+2), and H=(x-2)
ii) Volume=12ky2+8ky-20k
Volume=4k[3y2+2y-5]
Volume=4k[3y2+5y-3y-5]
Volume=4k[y(3y+5)-1(3y-5)]
Volume=4k(3y+5)(y-1)
Volume=L×B×H
Answer :
L=4k,B=(3y+5), and H=(y-1)
Comments