9th Maths 2.4

NCERT Class 9th solution of Exercise 2.1

NCERT Class 9th solution of Exercise 2.2

NCERT Class 9th solution of Exercise 2.3 

NCERT Class 9th solution of Exercise 2.5

Exercise 2.4

Q1. Determine each of the following polynomials has `(x+1)` a factor :
i) `x^3 + x^2 + x + 1`   ii)`x^4 + x^3 + x^2 + x + 1`  
iii) `x^4 + 3x^3 + 3x^2 + x + 1` 
iv) `x^3 - x^2 - (2 + sqrt2)x + sqrt2`
Sol. :
i) Let `p(x) = x^3 + x^2 + x + 1` 
and zero of `x + 1` is `- 1`
`p(-1) = (-1)^3 + (-1)^2 + (-1) + 1`
`p(-1) = - 1 + 1 - 1 + 1`
`p(-1) = 0`
Answer :
`(x+1)` is a factor.
ii) Let `p(x) = x^4 + x^3 + x^2+ x + 1`
and zero of `x+1` is `- 1`
`p(-1) = (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1`
`p(-1) = 1 - 1 + 1 - 1 + 1`
`p(-1) = 1 ≠ 0 `
Answer :
`(x+1)` is not a factor.
iii) Let `p(x) = x^4 + 3x^3 + 3x^2+ x + 1`
and zero of `x+1` is `- 1`
`p(-1) =  (-1)^4 + 3(-1)^3 + 3(-1)^2+ (-1) + 1`
`p(-1) = 1 - 3 + 3 - 1 + 1`
`p(-1) = 1 ≠ 0`
Answer :
`(x+1)` is not a factor.
iv) Let `p(x) = x^3 - x^2 - (2 + sqrt2)x + sqrt2`
and zero of `x+1` is `- 1`
`p(-1) = (-1)^3 - (-1)^2 - (2 + sqrt2)(-1)+ sqrt2`
`p(-1) = - 1 - 1 + (2 + sqrt2)+ sqrt2`
`p(-1) = - 2 + 2 + sqrt2 + sqrt2`
`p(-1) = 2sqrt2 ≠ 0`
Answer :
`(x+1)` is not a factor. 
Q2. Use the Factor Theorem to whether `g(x)` is a factor of `p(x)` in each of the following cases :
i) `p(x) = 2x^3 + x^2 - 2x - 1, g(x) = x + 1` 
ii) `p(x) = x^3 + 3x^2 + 3x + 1, g(x) = x + 2`
iii) `p(x) =  x^3 - 4x^2 + x + 6, g(x) = x - 3`
Sol. :
i) `p(x) = 2x^3 + x^2 - 2x - 1` 
and zero of `g(x) = x + 1` is `- 1`
`p(-1) = 2(-1)^3 + (-1)^2 - 2(-1) - 1`
`p(-1) = - 2 + 1 + 2 - 1`
`p(-1) = 0`
Answer :
`g(x)` is a factor.
ii) `p(x) = x^3 + 3x^2 + 3x + 1`
and zero of `g(x) = x + 2` is `- 2`
`p(-2) = (-2)^3 + 3(-2)^2 + 3(-2) + 1`
`p(-2) = - 8 + 12 - 6 + 1`
`p(-2) = - 14 + 13`
`p(-2) = - 1 ≠ 0`
Answer : 
`g(x)` is a factor.
iii) `p(x) =  x^3 - 4x^2 + x + 6`
and zero of `g(x) = x - 3` is `3`
`p(3) = (3)^3 - 4(3)^2 + 3 + 6`
`p(3) = 27 - 36 + 9`
`p(3) = 36 - 36`
`p(3) = 0`
Answer :
`g(x)` is a factor.
Q3. Find the value of `k`, if `x - 1` is a factor of `p(x)` in each of the following cases :
i) `p(x) = x^2 + x + k`  ii) `p(x) = 2x^2 + kx + sqrt2`  
iii) `p(x) = kx^2 - sqrt(2)x + 1`  iv) `p(x) = kx^2 - 3x + k`
Sol. :
i) Let `p(x) = x^2 + x + k = 0`
and zero of `x-1` is `1`
`p(1) = (1)^2 + (1) + k = 0`
`1 + 1 + k = 0`
`2 + k = 0`
`k = - 2`
Answer :
`k = - 2`
ii) `Let p(x) = 2x^2 + kx + sqrt2 = 0`
and zero of `x-1` is `1`
`p(1) = 2(1)^2 + k(1) + sqrt2 = 0`
`2 + k + sqrt2 = 0`
`k = - 2 - sqrt2`
Answer :
`k = - (2 + sqrt2)`
iii) `let p(x) = kx^2 - sqrt(2)x + 1 = 0`
and zero of `x-1` is `1`
`p(1) = k(1)^2 - sqrt(2)(1) + 1 = 0`
`k - sqrt 2 + 1 = 0`
`k = sqrt2 - 1`
Answer :
`k = sqrt2 - 1`
iv) Let `p(x) = kx^2 - 3x + k = 0`
and zero of `x-1` is `1`
`p(1) = k(1)^2 - 3(1) + k = 0`
`k - 3 + k = 0`
`2k  = 3`
`k = frac(3)(2)`
Answer :
`k = frac(3)(2)`
Q4. Factorise :
i) `12x^2 - 7x +1`  ii) `2x^2 + 7x + 3`  
iii) `6x^2+5x-6`  iv) `3x^2 - x - 4`
Sol. : 
i)`= 12x^2 - 7x + 1`
`= 12x^2 - 4x - 3x + 1`
`= 4x(3x - 1) - 1(3x - 1)`
`= (4x - 1)(3x - 1)`
Answer :
factors are `(4x - 1)(3x - 1)`
ii) `= 2x^2 + 7x + 3`
`= 2x^2 + 6x + x + 3`
`= 2x(x + 3) + 1(x + 3)`
`= (2x + 1)(x + 3)`
Answer :
factors are `(x + 3)(2x + 1)`
iii) ` = 6x^2 + 5x - 6`
`= 6x^2 + 9x - 4x - 6`
`= 3x(2x + 3) - 2(2x + 3)`
`= (2x + 3)(3x - 2)`
Answer :
factors are `(2x + 3)(3x -2)`
iv) `= 3x^2 - x - 4`
`= 3x^2 + 3x - 4x -4`
`= 3x(x + 1) - 4(x + 1)`
`= (x + 1)(3x - 4)`
Answer :
factors are `(x + 1)(3x - 4)`
Q5. Factorise : 
i) `x^3 - 2x^2 - x + 2` ii) `x^3 - 3x^2 - 9x - 5` 
iii) `x^3 + 13x^2 + 32x + 20`  iv) `2y^3 + y^2 - 2y - 1`
Sol. :
i) `= x^3 - 2x^2 - x + 2`
`= x^2(x - 2) - 1(x + 2)`
`= (x - 2)( x^2 - 1)`
`= (x - 2)(x - 1)(x + 1)`   `[   (a^2 - b^2) = (a + b)(a - b) ]`
Answer :
factors are `(x - 2)(x - 1)(x + 1).`
ii) `= x^3 - 3x^2 - 9x - 5`
`= x^3 + x^2 - 4x^2 - 4x - 5x - 5`
`= x^2(x + 1) - 4x(x + 1) - 5(x + 1)`
`= (x + 1)[ x^2 - 4x - 5]`
`= (x + 1)[x^2 - 5x + x - 5]`
`= (x + 1)[x(x - 5) + 1(x - 5)]`
`= (x + 1)(x - 5)(x + 1)`
Answer :
factors are `(x + 1)^2(x - 5)`
iii) `= x^3 + 13x^2 + 32x + 20`
`= x^3 + x^2 + 12x^2 + 12x + 20x + 20`
`= x^2(x + 1) + 12x(x + 1) + 20(x +1)`
`= (x + 1) [x^2 + 12x + 20]`
`= (x + 1) [x^2 + 2x + 10x + 20]`
`= (x + 1) [x(x + 2) + 10(x + 2)]`
`= (x + 1)(x + 2)(x + 10)`
Answer :
factors are `(x + 1)(x + 2)(x + 10)`
 iv) `= 2y^3 + y^2 - 2y - 1`
`= y^2(2y + 1) - 1(2y - 1)`
`= (2y + 1)(y^2 - 1)`
`= (2y + 1)(y + 1)(y - 1)`  `[  a^2 - b^2 = (a + b)(a - b)]`
Answer :
factors are `(2y + 1)(y + 1)(y - 1)` 

Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result