9th Mahts 6.3

NCERT Class 9th solution of Exercise 6.1

NCERT Class 9th solution of Exercise 6.2

Exercise 6.3

Q1. In the given figure, sides `QP` and `RQ` of `△PQR` are produced to points `S` and `T` respectively. If `∠SPR=135°` and `∠PQT=110°`, find `∠PRQ`.
Sol.
`∠PQT+∠PQR=180°`  [ By linear pair. ]
`110°+∠PQR=180°`    [ Given `∠PQT=110°` ]
`∠PQR=180°-110°`
`∠PQR=70°`
`∠PRQ+∠PQR=∠SPR`  
                            [ By exterior angle property ]
`∠PRQ+70°=135°`       [ Given `∠SPR=135°` ]
`∠PRQ=135°-70°`
`∠PRQ=65°`
Answer :
The required value of `∠PRQ=65°`.

Q2. In the given figure, `∠X=62°, ∠XYZ=54°`. If `YO` and `ZO` are the bisectors of `∠XYZ` and `∠XZY` respectively of `△XYZ`, find `∠OZY` and `∠YOZ`.
Sol. :
In `△XYZ`,
`∠YXZ+∠XYZ+∠XZY=180°`  
                                         [ By Angle sum property of `△`]
`62°+54°+∠XZY=180°`
`∠XZY=180°-62°-54°`
`∠XZY=180°-116°`
`∠XZY=64°`
`∠XZO=∠OZY=frac(1)(2)times∠XZY`    
                                                   [ `ZO` is bisect `∠XZY`]
`∠XZO=∠OZY=frac(1)(2)times64°`         
                                                       [ Given `∠XZY=64°`]  
`∠XZO=∠OZY=32°`
`∠XYO=∠OYZ=frac(1)(2)times∠XYZ`   
                                                 [ `YO` is bisect `∠XYZ` ]
`∠XYO=∠OYZ=frac(1)(2)times54°`        
                                                      [ Given `∠XYZ=54°` ]
`∠XYO=∠OYZ=27°`
In `△YOZ`
`∠OYZ+∠OYZ+∠YOZ=180°` 
                                      [ By angle sum property of `△`]
`27°+32°+∠YOZ=180°`
`∠YOZ=180°-27°-32°`
`∠YOZ=180°-59°`
`∠YOZ=121°`
Answer :
The required `∠OZY=32°` and `∠YOZ=121°`.

Q3. In the given figure, if `AB∥DE, ∠BAC=35°` and `∠CDE=53°`, find `∠DCE`
Sol. :
`AB∥DE` and `AE` is transversal.                [ Given ]
`∠CED=∠BAC`                           [ Alternate angles ]
`∠CED=35°`
In `△CDE`
`∠DCE+∠CDE+∠CED=180°`                 
                               [ By angle sum property of `△` ]
`∠DCE+53°+35°=180°`                         
                                                [Given `∠CDE=53°`]
`∠DCE=180°-88°`
`∠DCE=92°`
Answer :
The required value `∠DCE=92°`.

Q4. In the given figure, if lines `PQ` and `RS` intersect at `T`, such that `∠PRT=40°, ∠RPT=95°`.
Sol. :
In `△PRT`
`∠PTR+∠RPT+∠PRT=180°` 
                         [ By angle sum property of `△` ]
`∠PRT+95°+40°=180°`        
                 [ Given `∠RPT=95°` & `∠PRT=40°`]
`∠PRT=180°-95°-40°`
`∠PRT=180°-135°`
`∠PRT=45°`
`PQ` intersect `RS` at point `T`
`∠QTS=∠PRT`             [ Vertically opp. angles]
`∠QTS=45°`
In `△SQT`
`∠SQT+∠TSQ+∠QTS=180°` 
                        [ By angle sum property of `△`]
`∠SQT+75°+45°=180°`         
                                        [ Given `∠TSQ=75°`]
`∠SQT=180°-75°-45°`
`∠SQT=180°-120°`
`∠SQT=60°`
 Answer :
The required value of `∠SQT=60°`.

Q5. In the given figure, if `PQ⊥PS, PQ∥SR, ∠SQR=28° and ∠QRT=65°`, then find the values of `x` and `y`.
Sol. :
`PQ∥SR` and `QR` is transversal
`∠PQR=∠QRT`                         [Alternat angles ]
According to figure
`∠PQS+∠SQR=∠QRT`
`x+28°=65°` 
                  [Given `∠SQR=28°` & `∠QRT=65°`]
`x=65°-28°`
`x=37°`
In `△PQS`
`∠QPS+∠PQS+∠PSQ=180` 
                         [ By angle sum property of `△`]
`90°+37°+y=180°`           [ Given `∠QPS=90°`]
`y=180°-90°-37°`
`y=180°-127°`
`y=53°`
Answer :
The required value of `x=37°` & `y=53°`.

Q6. In the given figure, the side `QR` of `△PQR` is produced to a point `S`. If the bisectors of `∠PQR` and `∠PRS` meet at point `T`, then prove that `∠QTR=frac(1)(2)∠QPR`.
 
Sol. :
According to figure 
`∠PRS=∠QPS+∠PQR`______(1) 
                                   [ By exterior angle property ]
`∠TRS=∠QTR+∠TQR`_____(2)  
                                   [ By exterior angle property ]
Since `QT` & `RT` are bisectors of `∠PQR`
& `∠PRS` [Given]
`∠TQR=frac(1)(2)∠PQR`___(3)
`∠TRS=frac(1)(2)∠PRS`____(4)
`∠TRS=frac(1)(2)∠QPR+frac(1)(2)∠PQR`___(5)
                                                     [ by eq.(1) &(4)]
`∠QTR+∠TQR=frac(1)(2)∠QPR+frac(1)(2)∠PQR` 
                                                   [ by eq.(2) & (5) ]
`∠QTR+frac(1)(2)∠PQR=frac(1)(2)∠QPR+frac(1)(2)∠PQR`
`∠QTR=frac(1)(2)∠QPR`
Proved.
 

Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result