8th Maths 9.5

Q1.What is an Identity ?
Answer
An equality, true for every value of the variable in it, is called an identity.
1. (a + b)2=a2+2ab+b2
2. (a - b)2=a2-2ab+b2
3. (a + b)(a - b) = a2-b2
4. (x + a)(x + b) = x2+ (a + b)x + ab

Exercise 9.5

Q1. Use a suitable identity to get each of the following products.
i) (x+3)(x+3) 
ii) (2y+5)(2y+5)
iii) (2a-7)(2a-7)
iv) (3a-12)(3a-12)
v) (1.1m-0.4)(1.1m+0.4)
vi) (a2+b2)(-a2+b2)
vii) (6x-7)(6x+7)
viii) (-a+c)(-a+c)
ix) (x2+3y4)(x2+3y4)
x) (7a-9b)(7a-9b)


i) (x+3)(x+3)
Sol.
=(x+3)(x+3)
=(x+3)2
[ (a + b)2=a2+2ab+b2]
where a = x, b = 3
=x2+2×x×3+(3)2
=x2+6x+9
Answer
=x2+6x+9

ii) (2y+5)(2y+5)
Sol.
=(2y+5)(2y+5)
=(2y+5)2
[ (a + b)2=a2+2ab+b2]
where a = 2y,b = 5
=(2y)2+2×2y×5+(5)2
=4y2+20y+25
Answer
=4y2+20y+25

iii) (2a-7)(2a-7)
Sol.
=(2a-7)(2a-7)
=(2a-7)2
[ (a - b)2=a2-2ab+b2]
where a =2a,b =7
=(2a)2+2×2a×7+(7)2
=4a2+28a+49
Answer
=4a2+28a+49

iv) (3a-12)(3a-12)
Sol.
=(3a-12)(3a-12)
=(3a-12)2
[ (a - b)2=a2-2ab+b2]
where a =3a,b =12
=(3a)2-2×3a×12+(12)2
=9a2-3a+14
Answer
=9a2-3a+14

v) (1.1m-0.4)(1.1m+0.4)
Sol.
=(1.1m-0.4)(1.1m+0.4)
[ (a + b)(a - b) = a2-b2]
Where a = 1.1m, b = 0.4
=(1.1m)2-(0.4)2
=1.21m2-1.6
Answer
=1.21m2-1.6

vi) (a2+b2)(-a2+b2)
Sol.
=(a2+b2)(-a2+b2)
=(b2+a2)(b2-a2)
[ (a + b)(a - b) = a2-b2]
Where a=b2,b=a2
=(b2)2-(a2)2
=b4-a4
Answer
=b4-a4

vii) (6x-7)(6x+7)
Sol.
=(6x-7)(6x+7)
[ (a + b)(a - b) = a2-b2]
Where a = 6x, b = 7
=(6x)2-(7)2
=36x2-49
Answer
=36x2-49

viii) (-a+c)(-a+c)
Sol.
=(-a+c)(-a+c)
=(c-a)(c-a)
=(c-a)2
[ (a - b)2=a2-2ab+b2]
where a = c, b = a
=c2-2×c×a+a2
=c2-2ac+a2
Answer
=a2+2ac+c2

ix) (x2+3y4)(x2+3y4)
Sol.
=(x2+3y4)(x2+3y4)
=(x2+3y4)2
[ (a + b)2=a2+2ab+b2]
where a=x2,b=3y4
=(x2)2+2×x2×3y4+(3y4)2
=x24+3xy4+9y216
Answer
=x24+3xy4+9y216

x) (7a-9b)(7a-9b)
Sol.
=(7a-9b)(7a-9b)
=(7a-9b)2
[ (a - b)2=a2-2ab+b2]
where a = 7a, b = 9b
=(7a)2-2×7a×9b+(9b)2
=49a2-126ab+81b2
Answer
=49a2-126ab+81b2

Q2. Use the identity (x+a)(x+b)=x2+(a+b)x+ab to find the following products.
i) (x+3)(x+7)
ii) (4x+5)(4x+1)
iii) (4x-5)(4x-1)
iv) (4x+5)(4x-1)
v) (2x+5y)(2x+3y)
vi) (2a2+9)(2a2+5)
vii) (xyz-4)(xyz-2)

i) (x+3)(x+7)
Sol.
=(x+3)(x+7)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x = x, a = 3, b = 7
=x2+(3+7)x+3×7
=x2+10x+21
Answer
=x2+10x+21

ii) (4x+5)(4x+1)
Sol.
 =(4x+5)(4x+1)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x = 4x, a = 5, b = 1
=(4x)2+(5+1)4x+5×1
=16x2+24x+5
Answer
=16x2+24x+5

iii) (4x-5)(4x-1)
Sol.
=(4x-5)(4x-1)
[ (x - a)(x - b) = x2- (a + b)x + ab ]
where x = 4x, a = 5, b = 1
=(4x)2-(5+1)4x+5×1
=16x2-24x+5
Answer
=16x2-24x+5

iv) (4x+5)(4x-1)
Sol.
=(4x+5)(4x-1)
[ (x + a)(x - b) = x2+ (a - b)x - ab ]
where x = 4x, a = 5, b = 1
=(4x)2+(5-1)4x-5×1
=16x2+16x-5
Answer
=16x2+16x-5

v) (2x+5y)(2x+3y)
Sol.
=(2x+5y)(2x+3y)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x = 2x, a = 5y, b = 3y
=(2x)2+(5y+3y)2x+5y×3y
=4x2+16xy+15y2
Answer
=4x2+16xy+15y2

vi) (2a2+9)(2a2+5)
Sol.
=(2a2+9)(2a2+5)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x=2a2,a =9,b =5
=(2a2)2+(9+5)2a2+9×5
=4a4+28a2+45
Answer
=4a4+28a2+45

vii) (xyz-4)(xyz-2)
Sol.
=(xyz-4)(xyz-2)
[ (x - a)(x - b) = x2- (a + b)x + ab ]
where x = xyz, a = 4, b = 2
=(xyz)2-(4+2)xyz+4×2
=x2y2z2-6xyz+8
Answer
=x2y2z2-6xyz+8


Q3. Find the following squares by using the identities.
i) (b-7)2
ii) (xy-3z)2
iii) (6x2-5y)2
iv) (23m+32n)2
v) (0.4p-0.5q)2
vi) (2xy+5y)2

i) (b-7)2
Sol.
=(b-7)2
[ (a - b)2=a2-2ab+b2]
where a =b,b =7
=(b)2-2×b×7+(7)2
=b2-14b+49
Answer
=b2-14b+49

ii) (xy-3z)2
Sol.
=(xy-3z)2
[ (a - b)2=a2-2ab+b2]
where a = xy, b = 3z
=(xy)2-2×xy×3z+(3z)2
=x2y2-6xyz+9z2
Answer
=x2y2-6xyz+9z2

iii) (6x2-5y)2
Sol.
=(6x2-5y)2
[ (a - b)2=a2-2ab+b2]
where a=6x2,b =5y
=(6x2)2-2×6x2×5y+(5y)2
=36x4-60x2y+25y2
Answer
=36x4-60x2y+25y2

iv) (23m+32n)2
Sol.
=(23m+32n)2
[ (a + b)2=a2+2ab+b2]
where a = 23m,b = 32n
=(23m)2+2×23m×32n+(32n)2
=49m2+2mn+94n2
Answer
=49m2+2mn+94n2

v) (0.4p-0.5q)2
Sol.
=(0.4p-0.5q)2
[ (a - b)2=a2-2ab+b2]
where a = 0.4p, b = 0.5q
=(0.4p)2-2×0.4p×0.5q+(0.5q)2
=0.16p2-0.04pq+0.25q2
Answer
=0.16p2-0.04pq+0.25q2

vi) (2xy+5y)2
Sol.
=(2xy+5y)2
[ (a + b)2=a2+2ab+b2]
where a = 2xy,b = 5y
=(2xy)2+2×2xy×5y+(5y)2
=4x2y2+20xy+25y2
Answer
=4x2y2+20xy+25y2

Q4. Simplify.
i) (a2-b2)2
ii) (2x+5)2-(2x-5)2
iii) (7m-8n)2+(7m+8n)2
iv) (4m+5n)2+(5m+4n)2
v) (2.5p-1.5q)2-(1.5p-2.5q)2
vi) (ab+bc)2-2ab2c
vii) (m2-n2m)2+2m3n2

i) (a2-b2)2
Sol.
=(a2-b2)2
[ (a - b)2=a2-2ab+b2]
where a =a2,b =b2
=(a2)2-2×a2×b2+(b2)2
=a4-2a2b2+b4
Answer
=a4-2a2b2+b4

ii) (2x+5)2-(2x-5)2
Sol.
=(2x+5)2-(2x-5)2
[  a2-b2=(a+b)(a-b)  ]
Where a = (2x+5), b = (2x-5)
=(2x+5+2x-5)(2x+5-2x+5)
=4x×10
=40x
Answer
=40x

iii) (7m-8n)2+(7m+8n)2
Sol.
=(7m-8n)2+(7m+8n)2
=(7m)2-2×7m×8n+(8n)2+(7m)2+2×7m×8n+(8n)2
=49m2-112mn+64n2+49m2+112mn+64n2
=98m2+128n2
Answer
=98m2+128n2

iv) (4m+5n)2+(5m+4n)2
Sol.
=(4m+5n)2+(5m+4n)2
=(4m)2+2×4m×5n+(5n)2+(5m)2+2×5m×4n+(4n)2
=16m2+40mn+25n2+25m2+40mn+16n2
=41m2+80mn+41n2
Answer
=41m2+80mn+41n2

v) (2.5p-1.5q)2-(1.5p-2.5q)2
Sol.
=(2.5p-1.5q)2-(1.5p-2.5q)2
=(2.5p)2-2×2.5p×1.5q+(1.5q)2-(1.5p)2-2×1.5p×2.5q+(2.5q)2
=6.25p2-7.50pq+2.25q2-2.25p2+7.50pq-6.25q2
=4p2-4q2
Answer
=4p2-4q2

vi) (ab+bc)2-2ab2c
Sol.
=(ab+bc)2-2ab2c
=(ab)2+2×ab×bc+(bc)2-2ab2c
=a2b2+2ab2c+b2c2-2ab2c
=a2b2+b2c2
Answer
=a2b2+b2c2

vii) (m2-n2m)2+2m3n2
Sol.
 =(m2-n2m)2+2m3n2
=(m2)2-2×m2×n2m+(n2m)2+2m3n2
=m4-2m3n2+n4m2+2m3n2
=m4+n4m2
Answer
=m4+n4m2

Q5. Show that.
i) (3x+7)2-84x=(3x-7)2
ii) (9p-5q)2+180pq=(9p+5q)2
iii) (43m-34n)2+2mn=169m2+916n2
iv) (4pq+3q)2-(4pq-3q)2=48pq2
v) (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

i) (3x+7)2-84x=(3x-7)2
Sol.
=LHS.
=(3x+7)2-84x
=(3x)2+2×3x×7+(7)2-84x
=9x2+42x+49-84x
=9x2-42x+49
=(3x)2-2×3x×7+(7)2
=(3x-7)2
=RHS.
LHS.=RHS.
Proved

ii) (9p-5q)2+180pq=(9p+5q)2
Sol.
LHS.
=(9p-5q)2+180pq
=(9p)2-2×9p×5q+(5q)2+180pq
=81p2-90pq+25q2+180pq
=81p2+90pq+25q2
=(9p)2+2×9p×5q+(5q)2
=(9p+5q)2
=RHS.
LHS.=RHS.
Proved

iii) (43m-34n)2+2mn=169m2+916n2
Sol.
LHS.
=(43m-34n)2+2mn
=(43m)2-2×43m×34n+(34n)2+2mn
=169m2-2mn+916n2+2mn
=169m2+916n2
RHS.
LHS.=RHS.
Proved

iv) (4pq+3q)2-(4pq-3q)2=48pq2
Sol.
=(4pq+3q)2-(4pq-3q)2
=(4pq+3q+4pq-3q)(4pq+3q-4pq+3q)
=(8pq)(6q)
=48pq2
LHS.
LHS.=RHS.
Proved

v) (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
Sol.
LHS.
=(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)
=a2-b2+b2-c2+c2-a2
=0
RHS.
LHS.=RHS.
Proved

Q6. Using identities, evaluate
i) 712
ii) 992
iii) 1022
iv) 9982
v) 5.22
vi) 297×303
vii) 78×82
viii) 8.92
ix) 1.05×9.5

i) 712
Sol.
=712
=(70+1)2
[ (a + b)2=a2+2ab+b2]
where a = 70,b = 1
=(70)2+2×70×1+(1)2
=4900+140+1
=5041
Answer
=5041

ii) 992
Sol.
=992
=(100-1)2
[ (a + b)2=a2-2ab+b2]
where a = 100,b = 1
=(100)2-2×100×1+(1)2
=10000-200+1
=9801
Answer
=9801

iii) 1022
Sol.
=1022
=(100+2)2
[ (a + b)2=a2+2ab+b2]
where a = 100,b = 2
=(100)2+2×100×2+(2)2
=10000+400+4
=10404
Answer
=10404

iv) 9982
Sol.
=9982
=(1000-2)2
[ (a + b)2=a2-2ab+b2]
where a = 1000,b = 2
=(1000)2-2×1000×2+(2)2
=1000000-4000+4
=996004
Answer
=996004

v) 5.22
Sol.
=5.22
=(5.0+0.2)2
[ (a + b)2=a2+2ab+b2]
where a = 5.0,b = 0.2
=(5.0)2+2×5.0×.2+(0.2)2
=25+2.0+0.04
=27.04
Answer
=27.04


vi) 297×303
Sol.
=297×303
=(300-3)(300+3)
[ (a + b)(a - b) = a2-b2]
Where a = 300, b = 3
=(300)2-(3)2
=90000-9
=89991
Answer
=89991

vii) 78×82
Sol.
=78×82
=(80-2)(80+2)
[ (a + b)(a - b) = a2-b2]
Where a = 80, b = 2
=(80)2-(2)2
=6400-4
=6396
Answer
=6396

viii) 8.92
Sol.
=8.92
=(8+0.9)2
[ (a + b)2=a2+2ab+b2]
where a = 8,b = 0.9
=(8)2+2×8×0.9+(0.9)2
=64+14.4+0.81
=79.21
Answer
=79.21

ix) 1.05×9.5
Sol.
=1.05×9.5
=(1+0.05)(9+0.5)
=1(9+0.5)+0.05(9+0.5)
=1×9+1t×0.5+0.05×9+0.05×0.5 
=9+0.5+0.45+0.025
=9.5+0.475
=9.975
Answer
=9.975


Q7. Using a2-b2=(a+b)(a-b), find
i) 512-482
ii) (1.02)2-(0.98)2
iii) 1532-1472
iv) 12.12-7.92

i) 512-492
Sol.
=512-492
=(51+49)(51-49)
=100×2
=200
Answer
=200

ii) (1.02)2-(0.98)2
Sol.
=(1.02)2-(0.98)2
=(1.02+0.98)(1.02-0.98)
=2×0.04
=0.08
Answer
=0.08

iii) 1532-1472
Sol.
=1532-1472
=(153+147)(153-147)
=300×6
=1800
Answer
=1800

iv) 12.12-7.92
Sol.
=12.12-7.92
=(12.1+7.9)(12.1-7.9)
=20×4.2
=84
Answer
=84

Q8. Using (x+a)(x+b)=x2+(a+b)x+ab, find
i) 103×104
ii) 5.1×5.2
iii) 103×98
iv) 9.7×9.8

i) 103×104
Sol.
=103×104
=(100+3)(100+4)
=(100)2+(3+4)100+3×4
=10000+700+12
=10712
Answer
=10712

ii) 5.1×5.2
Sol.
=5.1×5.2
=(5+0.1)(5+0.2)
=(5)2+(0.1+0.2)5+0.1×0.2
=25+0.3×5+0.02
=25+1.5+0.02
=26.52
Answer
=26.52

iii) 103×98
Sol.
=103×98
=(100+3)(100-2)
=(100)2+(3-2)100-3×2
=10000+100-6
=10000+94
=10094
Answer
=10094

iv) 9.7×9.8
Sol.
=9.7×9.8
=(9+0.7)(9+0.8)
=(9)2+(0.7+0.8)9+0.7×0.8
=81+1.5×9+0.56
=81+13.5+0.56
=95.06
Answer
=95.06

Comments

Popular posts from this blog

10th Maths Chapter 1

CBSE 10th and 12th Result

RSKMP 5th & 8th Result