8th Maths 9.5
Chapter 9
Algebraic Expressions and Identities
NCERT Class 8th solution of Exercise 9.1
NCERT Class 8th solution of Exercise 9.2
NCERT Class 8th solution of Exercise 9.3
NCERT Class 8th solution of Exercise 9.4
Q1.What is an Identity ?
Answer
An equality, true for every value of the variable in it, is called an identity.
1. (a + b)2=a2+2ab+b2
2. (a - b)2=a2-2ab+b2
3. (a + b)(a - b) = a2-b2
4. (x + a)(x + b) = x2+ (a + b)x + ab
Exercise 9.5
Q1. Use a suitable identity to get each of the following products.
i) (x+3)(x+3)
ii) (2y+5)(2y+5)
iii) (2a-7)(2a-7)
iv) (3a-12)(3a-12)
v) (1.1m-0.4)(1.1m+0.4)
vi) (a2+b2)(-a2+b2)
vii) (6x-7)(6x+7)
viii) (-a+c)(-a+c)
ix) (x2+3y4)(x2+3y4)
x) (7a-9b)(7a-9b)
i) (x+3)(x+3)
Sol.
=(x+3)(x+3)
=(x+3)2
[ (a + b)2=a2+2ab+b2]
where a = x, b = 3
=x2+2×x×3+(3)2
=x2+6x+9
Answer
=x2+6x+9
ii) (2y+5)(2y+5)
Sol.
=(2y+5)(2y+5)
=(2y+5)2
[ (a + b)2=a2+2ab+b2]
where a = 2y,b = 5
=(2y)2+2×2y×5+(5)2
=4y2+20y+25
Answer
=4y2+20y+25
iii) (2a-7)(2a-7)
Sol.
=(2a-7)(2a-7)
=(2a-7)2
[ (a - b)2=a2-2ab+b2]
where a =2a,b =7
=(2a)2+2×2a×7+(7)2
=4a2+28a+49
Answer
=4a2+28a+49
iv) (3a-12)(3a-12)
Sol.
=(3a-12)(3a-12)
=(3a-12)2
[ (a - b)2=a2-2ab+b2]
where a =3a,b =12
=(3a)2-2×3a×12+(12)2
=9a2-3a+14
Answer
=9a2-3a+14
v) (1.1m-0.4)(1.1m+0.4)
Sol.
=(1.1m-0.4)(1.1m+0.4)
[ (a + b)(a - b) = a2-b2]
Where a = 1.1m, b = 0.4
=(1.1m)2-(0.4)2
=1.21m2-1.6
Answer
=1.21m2-1.6
vi) (a2+b2)(-a2+b2)
Sol.
=(a2+b2)(-a2+b2)
=(b2+a2)(b2-a2)
[ (a + b)(a - b) = a2-b2]
Where a=b2,b=a2
=(b2)2-(a2)2
=b4-a4
Answer
=b4-a4
vii) (6x-7)(6x+7)
Sol.
=(6x-7)(6x+7)
[ (a + b)(a - b) = a2-b2]
Where a = 6x, b = 7
=(6x)2-(7)2
=36x2-49
Answer
=36x2-49
viii) (-a+c)(-a+c)
Sol.
=(-a+c)(-a+c)
=(c-a)(c-a)
=(c-a)2
[ (a - b)2=a2-2ab+b2]
where a = c, b = a
=c2-2×c×a+a2
=c2-2ac+a2
Answer
=a2+2ac+c2
ix) (x2+3y4)(x2+3y4)
Sol.
=(x2+3y4)(x2+3y4)
=(x2+3y4)2
[ (a + b)2=a2+2ab+b2]
where a=x2,b=3y4
=(x2)2+2×x2×3y4+(3y4)2
=x24+3xy4+9y216
Answer
=x24+3xy4+9y216
x) (7a-9b)(7a-9b)
Sol.
=(7a-9b)(7a-9b)
=(7a-9b)2
[ (a - b)2=a2-2ab+b2]
where a = 7a, b = 9b
=(7a)2-2×7a×9b+(9b)2
=49a2-126ab+81b2
Answer
=49a2-126ab+81b2
Q2. Use the identity (x+a)(x+b)=x2+(a+b)x+ab to find the following products.
i) (x+3)(x+7)
ii) (4x+5)(4x+1)
iii) (4x-5)(4x-1)
iv) (4x+5)(4x-1)
v) (2x+5y)(2x+3y)
vi) (2a2+9)(2a2+5)
vii) (xyz-4)(xyz-2)
i) (x+3)(x+7)
Sol.
=(x+3)(x+7)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x = x, a = 3, b = 7
=x2+(3+7)x+3×7
=x2+10x+21
Answer
=x2+10x+21
ii) (4x+5)(4x+1)
Sol.
=(4x+5)(4x+1)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x = 4x, a = 5, b = 1
=(4x)2+(5+1)4x+5×1
=16x2+24x+5
Answer
=16x2+24x+5
iii) (4x-5)(4x-1)
Sol.
=(4x-5)(4x-1)
[ (x - a)(x - b) = x2- (a + b)x + ab ]
where x = 4x, a = 5, b = 1
=(4x)2-(5+1)4x+5×1
=16x2-24x+5
Answer
=16x2-24x+5
iv) (4x+5)(4x-1)
Sol.
=(4x+5)(4x-1)
[ (x + a)(x - b) = x2+ (a - b)x - ab ]
where x = 4x, a = 5, b = 1
=(4x)2+(5-1)4x-5×1
=16x2+16x-5
Answer
=16x2+16x-5
v) (2x+5y)(2x+3y)
Sol.
=(2x+5y)(2x+3y)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x = 2x, a = 5y, b = 3y
=(2x)2+(5y+3y)2x+5y×3y
=4x2+16xy+15y2
Answer
=4x2+16xy+15y2
vi) (2a2+9)(2a2+5)
Sol.
=(2a2+9)(2a2+5)
[ (x + a)(x + b) = x2+ (a + b)x + ab ]
where x=2a2,a =9,b =5
=(2a2)2+(9+5)2a2+9×5
=4a4+28a2+45
Answer
=4a4+28a2+45
vii) (xyz-4)(xyz-2)
Sol.
=(xyz-4)(xyz-2)
[ (x - a)(x - b) = x2- (a + b)x + ab ]
where x = xyz, a = 4, b = 2
=(xyz)2-(4+2)xyz+4×2
=x2y2z2-6xyz+8
Answer
=x2y2z2-6xyz+8
Q3. Find the following squares by using the identities.
i) (b-7)2
ii) (xy-3z)2
iii) (6x2-5y)2
iv) (23m+32n)2
v) (0.4p-0.5q)2
vi) (2xy+5y)2
i) (b-7)2
Sol.
=(b-7)2
[ (a - b)2=a2-2ab+b2]
where a =b,b =7
=(b)2-2×b×7+(7)2
=b2-14b+49
Answer
=b2-14b+49
ii) (xy-3z)2
Sol.
=(xy-3z)2
[ (a - b)2=a2-2ab+b2]
where a = xy, b = 3z
=(xy)2-2×xy×3z+(3z)2
=x2y2-6xyz+9z2
Answer
=x2y2-6xyz+9z2
iii) (6x2-5y)2
Sol.
=(6x2-5y)2
[ (a - b)2=a2-2ab+b2]
where a=6x2,b =5y
=(6x2)2-2×6x2×5y+(5y)2
=36x4-60x2y+25y2
Answer
=36x4-60x2y+25y2
iv) (23m+32n)2
Sol.
=(23m+32n)2
[ (a + b)2=a2+2ab+b2]
where a = 23m,b = 32n
=(23m)2+2×23m×32n+(32n)2
=49m2+2mn+94n2
Answer
=49m2+2mn+94n2
v) (0.4p-0.5q)2
Sol.
=(0.4p-0.5q)2
[ (a - b)2=a2-2ab+b2]
where a = 0.4p, b = 0.5q
=(0.4p)2-2×0.4p×0.5q+(0.5q)2
=0.16p2-0.04pq+0.25q2
Answer
=0.16p2-0.04pq+0.25q2
vi) (2xy+5y)2
Sol.
=(2xy+5y)2
[ (a + b)2=a2+2ab+b2]
where a = 2xy,b = 5y
=(2xy)2+2×2xy×5y+(5y)2
=4x2y2+20xy+25y2
Answer
=4x2y2+20xy+25y2
Q4. Simplify.
i) (a2-b2)2
ii) (2x+5)2-(2x-5)2
iii) (7m-8n)2+(7m+8n)2
iv) (4m+5n)2+(5m+4n)2
v) (2.5p-1.5q)2-(1.5p-2.5q)2
vi) (ab+bc)2-2ab2c
vii) (m2-n2m)2+2m3n2
i) (a2-b2)2
Sol.
=(a2-b2)2
[ (a - b)2=a2-2ab+b2]
where a =a2,b =b2
=(a2)2-2×a2×b2+(b2)2
=a4-2a2b2+b4
Answer
=a4-2a2b2+b4
ii) (2x+5)2-(2x-5)2
Sol.
=(2x+5)2-(2x-5)2
[ a2-b2=(a+b)(a-b) ]
Where a = (2x+5), b = (2x-5)
=(2x+5+2x-5)(2x+5-2x+5)
=4x×10
=40x
Answer
=40x
iii) (7m-8n)2+(7m+8n)2
Sol.
=(7m-8n)2+(7m+8n)2
=(7m)2-2×7m×8n+(8n)2+(7m)2+2×7m×8n+(8n)2
=49m2-112mn+64n2+49m2+112mn+64n2
=98m2+128n2
Answer
=98m2+128n2
iv) (4m+5n)2+(5m+4n)2
Sol.
=(4m+5n)2+(5m+4n)2
=(4m)2+2×4m×5n+(5n)2+(5m)2+2×5m×4n+(4n)2
=16m2+40mn+25n2+25m2+40mn+16n2
=41m2+80mn+41n2
Answer
=41m2+80mn+41n2
v) (2.5p-1.5q)2-(1.5p-2.5q)2
Sol.
=(2.5p-1.5q)2-(1.5p-2.5q)2
=(2.5p)2-2×2.5p×1.5q+(1.5q)2-(1.5p)2-2×1.5p×2.5q+(2.5q)2
=6.25p2-7.50pq+2.25q2-2.25p2+7.50pq-6.25q2
=4p2-4q2
Answer
=4p2-4q2
vi) (ab+bc)2-2ab2c
Sol.
=(ab+bc)2-2ab2c
=(ab)2+2×ab×bc+(bc)2-2ab2c
=a2b2+2ab2c+b2c2-2ab2c
=a2b2+b2c2
Answer
=a2b2+b2c2
vii) (m2-n2m)2+2m3n2
Sol.
=(m2-n2m)2+2m3n2
=(m2)2-2×m2×n2m+(n2m)2+2m3n2
=m4-2m3n2+n4m2+2m3n2
=m4+n4m2
Answer
=m4+n4m2
Q5. Show that.
i) (3x+7)2-84x=(3x-7)2
ii) (9p-5q)2+180pq=(9p+5q)2
iii) (43m-34n)2+2mn=169m2+916n2
iv) (4pq+3q)2-(4pq-3q)2=48pq2
v) (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
i) (3x+7)2-84x=(3x-7)2
Sol.
=LHS.
=(3x+7)2-84x
=(3x)2+2×3x×7+(7)2-84x
=9x2+42x+49-84x
=9x2-42x+49
=(3x)2-2×3x×7+(7)2
=(3x-7)2
=RHS.
LHS.=RHS.
Proved
ii) (9p-5q)2+180pq=(9p+5q)2
Sol.
LHS.
=(9p-5q)2+180pq
=(9p)2-2×9p×5q+(5q)2+180pq
=81p2-90pq+25q2+180pq
=81p2+90pq+25q2
=(9p)2+2×9p×5q+(5q)2
=(9p+5q)2
=RHS.
LHS.=RHS.
Proved
iii) (43m-34n)2+2mn=169m2+916n2
Sol.
LHS.
=(43m-34n)2+2mn
=(43m)2-2×43m×34n+(34n)2+2mn
=169m2-2mn+916n2+2mn
=169m2+916n2
RHS.
LHS.=RHS.
Proved
iv) (4pq+3q)2-(4pq-3q)2=48pq2
Sol.
=(4pq+3q)2-(4pq-3q)2
=(4pq+3q+4pq-3q)(4pq+3q-4pq+3q)
=(8pq)(6q)
=48pq2
LHS.
LHS.=RHS.
Proved
v) (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
Sol.
LHS.
=(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)
=a2-b2+b2-c2+c2-a2
=0
RHS.
LHS.=RHS.
Proved
Q6. Using identities, evaluate
i) 712
ii) 992
iii) 1022
iv) 9982
v) 5.22
vi) 297×303
vii) 78×82
viii) 8.92
ix) 1.05×9.5
i) 712
Sol.
=712
=(70+1)2
[ (a + b)2=a2+2ab+b2]
where a = 70,b = 1
=(70)2+2×70×1+(1)2
=4900+140+1
=5041
Answer
=5041
ii) 992
Sol.
=992
=(100-1)2
[ (a + b)2=a2-2ab+b2]
where a = 100,b = 1
=(100)2-2×100×1+(1)2
=10000-200+1
=9801
Answer
=9801
iii) 1022
Sol.
=1022
=(100+2)2
[ (a + b)2=a2+2ab+b2]
where a = 100,b = 2
=(100)2+2×100×2+(2)2
=10000+400+4
=10404
Answer
=10404
iv) 9982
Sol.
=9982
=(1000-2)2
[ (a + b)2=a2-2ab+b2]
where a = 1000,b = 2
=(1000)2-2×1000×2+(2)2
=1000000-4000+4
=996004
Answer
=996004
v) 5.22
Sol.
=5.22
=(5.0+0.2)2
[ (a + b)2=a2+2ab+b2]
where a = 5.0,b = 0.2
=(5.0)2+2×5.0×.2+(0.2)2
=25+2.0+0.04
=27.04
Answer
=27.04
vi) 297×303
Sol.
=297×303
=(300-3)(300+3)
[ (a + b)(a - b) = a2-b2]
Where a = 300, b = 3
=(300)2-(3)2
=90000-9
=89991
Answer
=89991
vii) 78×82
Sol.
=78×82
=(80-2)(80+2)
[ (a + b)(a - b) = a2-b2]
Where a = 80, b = 2
=(80)2-(2)2
=6400-4
=6396
Answer
=6396
viii) 8.92
Sol.
=8.92
=(8+0.9)2
[ (a + b)2=a2+2ab+b2]
where a = 8,b = 0.9
=(8)2+2×8×0.9+(0.9)2
=64+14.4+0.81
=79.21
Answer
=79.21
ix) 1.05×9.5
Sol.
=1.05×9.5
=(1+0.05)(9+0.5)
=1(9+0.5)+0.05(9+0.5)
=1×9+1t×0.5+0.05×9+0.05×0.5
=9+0.5+0.45+0.025
=9.5+0.475
=9.975
Answer
=9.975
Q7. Using a2-b2=(a+b)(a-b), find
i) 512-482
ii) (1.02)2-(0.98)2
iii) 1532-1472
iv) 12.12-7.92
i) 512-492
Sol.
=512-492
=(51+49)(51-49)
=100×2
=200
Answer
=200
ii) (1.02)2-(0.98)2
Sol.
=(1.02)2-(0.98)2
=(1.02+0.98)(1.02-0.98)
=2×0.04
=0.08
Answer
=0.08
iii) 1532-1472
Sol.
=1532-1472
=(153+147)(153-147)
=300×6
=1800
Answer
=1800
iv) 12.12-7.92
Sol.
=12.12-7.92
=(12.1+7.9)(12.1-7.9)
=20×4.2
=84
Answer
=84
Q8. Using (x+a)(x+b)=x2+(a+b)x+ab, find
i) 103×104
ii) 5.1×5.2
iii) 103×98
iv) 9.7×9.8
i) 103×104
Sol.
=103×104
=(100+3)(100+4)
=(100)2+(3+4)100+3×4
=10000+700+12
=10712
Answer
=10712
ii) 5.1×5.2
Sol.
=5.1×5.2
=(5+0.1)(5+0.2)
=(5)2+(0.1+0.2)5+0.1×0.2
=25+0.3×5+0.02
=25+1.5+0.02
=26.52
Answer
=26.52
iii) 103×98
Sol.
=103×98
=(100+3)(100-2)
=(100)2+(3-2)100-3×2
=10000+100-6
=10000+94
=10094
Answer
=10094
iv) 9.7×9.8
Sol.
=9.7×9.8
=(9+0.7)(9+0.8)
=(9)2+(0.7+0.8)9+0.7×0.8
=81+1.5×9+0.56
=81+13.5+0.56
=95.06
Answer
=95.06
Comments