8th Maths 6.1

Chapter 6

Squares and Square Roots

NCERT Class 8th solution of Exercise 6.2

NCERT Class 8th solution of Exercise 6.3

NCERT Class 8th solution of Exercise 6.4

Exercise 6.1

`text {Square you must learn.} `
`1^2=1`
`2^2=4`
`3^2=9`
`4^2=16`
`5^2=25`
`6^2=36`
`7^2=49`
`8^2=64`
`9^2=81`
`10^2=100`
`11^2=121`
`12^2=144`
`13^2=169`
`14^2=196`
`15^2=225`
`16^2=256`
`17^2=289`
`18^2=324`
`19^2=361`
`20^2=400`
`21^2=441`
`22^2=484`
`23^2=529`
`24^2=756`
`25^2=625`
`26^2=676`
`27^2=729`
`28^2=224`
`29^2=841`
`30^2=900`
`31^2=961`
`32^2=1024`
`33^2=1089`
`34^2=1156`
`35^2=1225`
`36^2=1296`
`37^2=1369`
`38^2=1444`
`39^2=1521`
`40^2=1600`
`41^2=1681`
`42^2=1764`
`43^2=1849`
`44^2=1936`
`45^2=2025`
`46^2=2116`
`47^2=2209`
`48^2=2304`
`49^2=2401`
`50^2=2500`

Q1. what will be the unit digit of the squares of the following numbers?
i) `81`
ii) `272`
iii) `799`
iv) `3853`
v) `1234`
vi) `26387`
vii) `52698`
viii) `99880`
ix) `12796`
x) `55555`
`text{Sol:}`
i) `text{The unit digit of 81 is 1,}``text{ so that its unit digit is 1.}`
ii) `text{The unit digit of 272 is 2,}``text{ so that its unit digit is 4.}`
iii) `text{The unit digit of 799 is 9,}``text{ so that its unit digit is 1.}`
iv) `text{The unit digit of 3853 is 3,}``text{ so that its unit digit is 9.}`
v) `text{The unit digit of 1234 is 4,}``text{ so that its unit digit is 6.}`
vi) `text{The unit digit of 26387 is 7,}``text{ so that its unit digit is 9.}`
vii) `text{The unit digit of 52698 is 8,}``text{ so that its unit digit is 4.}`
viii) `text{The unit digit of 99880 is 0,}``text{ so that its unit digit is 0.}`
ix) `text{The unit digit of 12796 is 6,}``text{ so that its unit digit is 6.}`
x) `text{The unit digit of 55555 is 5,}``text{ so that its unit digit is 5.}`


Q2. The following numbers are obviously not perfect squares. Give reason.
i) `1057`
ii) `23453`
iii) `7928`
iv) `222222`
v) `64000`
vi) `89722`
vii) `222000`
viii) `505050`
`text{Sol.}`
i) `text{The unit digit of 1057 is 7,}``text{ so that it is not perfect square.}`
ii) `text{The unit digit of 23453 is 3,}``text{ so that it is not perfect square.}`
iii) `text{The unit digit of 7928 is 8,}``text{ so that it is not perfect square.}`
iv) `text{The unit digit of 222222 is 2,}``text{ so that it is not perfect square.}`
v) `text{The number 64000 end with three 0,}``text{ so that it is not perfect square.}`
vi) `text{The unit digit of 89722 is 2,}``text{ so that it is not perfect square.}`
vii) `text{The number 222000 end with three 0,}``text{ so that it is not perfect square.}`
viii) `text{The number 505050 end with one 0,}``text{ so that it is not perfect square.}`

Q3. The squares of which of the following would be odd numbers?
i) `431`
ii) `2826`
iii) `7779`
iv) `82004`
`text{Sol.}`
i) `text{The unit digit of 431 is 1,}``text{ so that square would be an odd number.}`
ii) `text{The unit digit of 2826 is 6,}``text{ so that square would be an even number.}`
iii) `text{The unit digit of 7779 is 9,}``text{ so that square would be an odd number.}`
iv) `text{The unit digit of 82004 is 4,}``text{ so that square would be an even number.}`

Q4. Observe the following pattern and find the missing digits.
`11^2 = 121`
`101^2 = 10201`
`1001^2 = 1002001`
`100001^2 = 1underline text{     }2underline text{     }1`
`1000001^2 = underline text{     }`
`text{Sol.}`
`text{According to the given pattern}`
`100001^2 = 1underline{0000}2underline{0000}1`
`1000001^2 = underline{1000002000001}`

Q5. Observe the following pattern and supply the missing numbers.
`11^2 = 121`
`101^2 = 10201`
`10101^2 = 102030201`
`1010101^2 = underline text{               }`
`underline text{            } = 10203040504030201`
`text{Sol.}`
`text{According to given pattern}`
`1010101^2 = underline text{1020304030201}`
`underline{101010101^2} = 10203040504030201`

Q6. Using the given pattern, find the missing numbers.
`1^2 + 2^2 + 2^2 = 3^2`
`2^2 + 3^2 + 6^2 = 7^2`
`3^2 + 4^2 + 12^2 = 13^2`
`4^2 + 5^2 + underline text{     } = 21^2`
`5^2 + underline text{     } + 30^2 = 31^2`
`6^2 + 7^2 + underline text{     } =underline text{     }`
`text{Sol.}`
`text{According to given pattern}`
`4^2 + 5^2 + underline{20^2} = 21^2`
`5^2 + underline{6^2 } + 30^2 = 31^2`
`6^2 + 7^2 + underline{42^2 } = underline{43^2}`

Q7. Without adding, find the sum.
i) `1 + 3 + 5 + 7 + 9`
ii) `1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19`
ii) `1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19`` + 21 + 23`
`text{Sol.}`
`text{We know that,}``text{The sum of first n odd numbers is n}^2`.
i) `1 + 3 + 5 + 7 + 9`
`text{5 odd numbers so, n = 5 and }``text{sum is n}^2 = 5^2 = 25`.
ii) `1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19`
`text{10 odd numbers so, n = 10 and }``text{sum is n}^2 = 10^2 = 100`.
ii) `1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19`` + 21 + 23`
`text{12 odd numbers so, n = 12 and }``text{sum is n}^2 = 12^2 = 144`.

Q8. 
i) Express `49` as the sum of `7` odd numbers.
ii) Express `121` as the sum of `11` odd numbers.
`text{Sol.}`
`text{We know that,}``text{The sum of first n odd numbers is n}^2`.
i) `text{n}^2 = 7^2 = 49`
`49 = 1 + 3 + 5 + 7 + 9 + 11 + 13`
ii) `text{n}^2 = 11^2 = 121`
`121 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17`` + 19 + 21`

Q9. How many numbers lie between squares of the following numbers?
i) `12 text{ and } 13`
ii) `25 text{ and }26`
iii) `99 text{ and }100`
`text{Sol.}`
`text{We know that,}``text{number lie between n}^2 text{ and (n + 1)}^2 = 2text{n}`
i) `12^2 text{ and } 13^2 = 2text{n} = 2times12 = 24`
ii) `25^2 text{ and }26^2 = 2text{n} = 2times25 = 50`
iii) `99^2 text{ and }100^2 = 2text{n} = 2times99 = 198`

Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result