Time, Distance and Speed

FORMULA(Problem on Time, Distance & Speed )

i) `Time=(Distance)/(speed)`
ii) Distance = Speed X Time 
                     Distance 
iii) Speed = ---------------
                       Time
                                5
iv) `x km/hr` = x X ---- m/sec 
                               18 
                            18
v) y m/sec = y X----- km/hr
                             5
vi) If a certain distance is covered at x km/hr and the same distance is covered at y km/hr , then the average speed during whole journey = 2xy/(x+y) km/hr.
vii) If a man changes his speed in the ratio m:n, then the ratio of times takes becomes n:m.



Example on Time and Distance :

1) Express 63 km/hr into metres/sec .

Solution :

                                5
63 km/hr = 63 X -------m/sec = 17.5 m/sec.
                              18 
2) Colambus travels distances of 2500 km , 1200 km and 500 km at the rate of 500 km/hr, 400 km/hr and 250 km/hr respectively. Find the average speed .

Solution :

Total distance = ( 2500 + 1200 + 500 )km = 4200 km
                               2500       1200        500
Total time taken = -------- + -------- + --------- hrs = 10 hrs.
                                500        400          250 
                              4200
Average Speed = --------- km/hr = 420 km/hr.
                               10
3) A distance is covered in 3 hours 48 min. at 5 kmph. How much time will be taken to cover it at 28.5 kmpl ?

Solution :

Distance = (speed X Time )
              = 5 X 19/5 km
             = 19 km.
                  Distance
Time     = -----------------
                    speed 
                    19
              =  ------ hrs.
                   28.5
                    19
             =  ---------X 60 min.                  
                  28.5
            =  40 min.

Formula ( Boats & streams )

1) Let the speed of a boat in still water be x km/hr and let the speed of the steram be y km/ hr. Then :
i) Speed downstream = ( x + y)km/hr 
ii) Speed upstream   = ( x - y ) km/hr.
2) Let speed downstream = u km/hr & speed upstream = v km/hr.
Then,                              1
i) Rate in still water = ------ ( u + v)km/hr
                                       2
                                      1
ii) Rate of current = ------- ( u - v )km/hr
                                      2

Example on Boats & Streams

1) A woman can row 6 km/h in still water. It takes him twice as long to row up as to row down the river. Find the rate of stream .

Solution :

Let woman's rate upstream = x km/h .
then, woman's rate downstream = 2x km/h
                                                    1
woman's rate in still water = ---------( x + 2x )km/h
                                                   2
                                     6    =    3x/2
Rate upstream              x    =  4 km/h
Rate downstream        2x   =  8 km/h 
Rate of current                        1 X ( 8 - 4 )
                                         =  ------------------km/h   = 2 km/h 
                                                    2     
2)In a stream running at 2 km/h, a boat goes 10 km upstream and back again to the starting point in 55 minutes. Find the speed of the boat in still water .

Solution :

Let the speed of boat in still water be x km/h
Speed downstream = ( x + 2 )km/h,
Speed upstream      = ( x - 2 ) km/h,
       10           10          55
  --------  +  -------   = -----
    x - 2        x + 2        60
11x^2  - 240x - 44 = 0
( x -22 ) ( 11x + 2 ) = 0
                             x = 22.
  Rate in still water  = 22 km/h

Formula ( Trains )

i) Time taken by a train x metres long in passing a signal post or a pole or a standing man is the same as the time taken by the train to cover x metres with its own speed .
ii) Time taken by a train x metres long in passing a stationary object of length y metres is the same as the time taken by the train to cover ( x + y ) metres with its own speed .
iii) Suppose two trains or bodies are moving in th e same direction at u km/h. If two train of lengths x km and y km move in the same direction at u km/h and v km/h ( where u > v ), then time taken to cross each other  =  ( x + y )/ ( u - v ) hrs .
iv) Suppose two trains or bodies  are moving in the opposite directions at u km/h and v km/h. Then, relative speed = (u + v ) km/h . If two trains x km and y km move in the opposite directions at  u km/h and v km/h, then time taken to cross each other = ( x + y )/ ( u + v ) hrs .
v) If two trains start at same time from A and B towards each other and after crossing. they take a & b hours in reaching B and a respectively. Then ,
A's speed : B's speed =    ( √b : √a  ).

Example on Trains 

1) A train 160 m long is running with a speed of 48 km/h. In what time will it pass a fencing pole ?

Solution :

                                         5                     40
Speed of train = 48 X --------m/sec. = --------m/sec
                                       18                     3
                                             Distance                      3
Passing Time to the pole = -------------  =160 X --------sec = 12 sec.
                                              Speed                        40
2) A woman is standing on a railway bridge which is 50 m long. He finds that a train crosses the bridge
          1
 in 4------ seconds but himself in 2 seconds. Find the length of train and its speed .
          2 just

Solution :

Let the length of train be x metres,
then, the train covers x metres in 2 seconds and
                            1 
( x + 50 ) m in 4---- = ( 9/2 )  seconds.
                            2
                            x          x + 50
length of train  ------ = ------------- 
                            2             9/2
                           9 x   =  4 ( x + 50 )
                           9 x   =  4 x   +  200
                   9 x - 4 x   =  200
                           5 x   =   200
                              x   =   40
                 Distance                       40                                                   18
Speed  = ------------- m/sec  =  ---------m/sec. = 20 m/sec. = 20 X --------- km/m.
                   time                            2                                                     5
            = 72 km/m.
 Exercise
                                            1
1) If  a person travels 10------- km in 3 hours , then the distance covered by him in 5 hours will be :
                                           5
a) 18 km    b) 17 km     c) 16 km    d) 15 km
2) A boy goes to the school with the speed of 3 km/h and returns with the speed of 2 km/h. If he takes 5 hours in all , then the distance ( in kms ) between the village and the school is :
a) 6    b) 7     c) 8    d) 9 
3) A student walks from his house at 5 km/h and reaches his school 10 minutes late. If his speed had been 6 km/h he would have reached 15 minutes early . The distance of his school from his house is :
a) 2.5 km    b ) 12.5 km    c) 5.5 km     d) 3.6 km
4) If a train 110 m long passes a telephone pole in 3 seconds, then the time taken ( in seconds ) by it to cross a railway platform 165 m long , is :
a) 3    b) 4    c) 5    d) 7.5
5) A train 700 m long is running at the speed of 72 km/h. If it crosses a tunnel in 1 minute, then the length of tunnel ( in metres ) is :
a) 700 m    b) 600 m    c) 550 m    d) 500 m
6) If a 200 m long train crosses a platform of the same length as that of the train in 20 seconds, then the speed of the train is :
a) 70 km/h    b) 50 km/h    c) 72 km/h     d) 82 km/h
7) A train takes 18 seconds to pass completely through a station 162 m long and 15 seconds through another station 120 m long. The length of the train ( in metres ) is :
a) 73 m    b) 85 m     c) 90 m    d) 100 m
8) Two trains of lengths 120 m and 80 m are running in the same direction with velocities of 40 km/h and 50 km/h respectively. The time taken by then to cross each other , is :
a) 65 sec    b) 72 sec    c) 78 sec     d) 90 sec 
9) Two trains whose lengths are 180 m and 220 m respectively are running in direction opposite to one another with respectively speeds of 40 km/h and 50 km/h. Time taken by them in crossing one another will be :
a) 16 sec    b ) 12 sec    c) 15 sec     d) 23 sec 
10) A boat takes 2 hours to travel a distance of 9 km down the current and it takes 6hoursw to travel the same distance against the current. The speed of the boat in still water and that of the current . The speed of the boat in still water and that of the current ( in km/h ) respectively are :
a) 4, 1.2    b) 4, 5     c) 3.5 , 2.5     d) 4, 2  
Answer 
1) b    2) a    3) b    4) d    5) d    6) c    7) c    8) b    9) a    10) c
     









Comments

Popular posts from this blog

MPBSE 10th & 12th Result

RSKMP 5th & 8th Result

CBSE 10th and 12th Result